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1.   Introduction 

The use of geospatial information is growing continuously. In order to satisfy this demand, 
geospatial databases must be frequently updated, with the highest possible metric and thematic 
accuracy. The main sources of updates are aerial or satellite images, which are complemented 
by other types of information, such as LiDAR (Light Detection And Ranging). 

The most popular geospatial databases are those that provide land-use/land-cover information, 
since they provide key information for land management and environmental planning. These 
databases are internationally known as Land Use/Land Cover (LULC). Land use refers to the 
territory characterised according to its current and future planned functional dimension or socio-
economic purpose, while land cover is an abstraction of the physical and biophysical cover on 
the earth‘s surface. Traditionally, LULC databases have been updated by means of photo-
interpretation of aerial and satellite images, and by field visits. These techniques are lengthy, 
subjective, and costly. The utilization of digital techniques in the processing of aerial images 
reduces the volume of information that needs to be interpreted manually. It would be desirable 
to have automatic or semi-automatic methods offering the greatest possible degree of 
automation. LULC data are related to climatic and meteorological components, such as the 
interchange of gases for the greenhouse effect, and heat and radiation between the land surface 
and the atmosphere. Changes in LULC could affect ecosystems and, consequently the services 
and benefits that ecosystems provide to society.   

The main objective of the present work is to study automatic image classification techniques 
applied to LULC geospatial information. These techniques allow the detection of changes, 
which are then used to update geospatial LULC databases.  

Among the many different types of LULC, we focus on those that are similar to the Spanish 
SIOSE, but the proposed method would be valid for other LULC databases with scales close to 
1:25,000. This could be considered a high-resolution LULC database, as the title of this 
EuroSDR project indicates. Furthermore, we focus on urban areas because this is where most 
major changes occur.  

Geospatial data have been collected and changes have been studied for two dates, 2005 and 
2010, for a case study of an urban area of Madrid, the city of Alcala de Henares. A second case 
study also analyzed an urban and periurban area of the city of Valencia, using data from 2004 
and 2008. The last case study corresponds to a rural area from Murcia with data from 2007 and 
2009. The Madrid study compares data from the SIOSE cartographic database for 2005 against 
imagery (aerial images and LiDAR data) from 2010; the Valencia case contrasts imagery 
(Quickbird and LiDAR data) between two years 2004 against imagery (aerial and LiDAR data) 
for 2008; in the Murcia study is compared a LU/LC database from 2007 with aerial orthoimages 
of 2009. This approach permits the proposed method to be tested for different data, different 
survey dates, and different places.  

The proposed method is the same for the study areas; it is an object-oriented approach, based on 
rules used by Dempster–Shafer theory (DS theory), following satisfactory results previously 
obtained using this theory with per-pixel methods (Mena and Malpica, 2005; Malpica et al., 
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2012). In the present study, Dempster–Shafer theory has been extended with an object-oriented 
perspective, using a Region Adjacency Graph (RAG).  

Aerial and high-resolution satellite images provide a huge amount of detail, and are very useful 
for cartographic works; however, high resolution also introduces problems of shadows, which 
entail a devaluation of the radiometry for certain areas of the images. This problem is tackled 
here using the LiDAR data and metadata of the image.  

The main idea for LULC change detection is to achieve reliable classification of the imagery. 
To do this, since classes are related to each another, it is necessary to assign classes to every 
pixel or region in the image. A human operator examining an aerial image knows that a road is 
not interrupted by a group of high trees; that the road may be obscured beneath the tree canopy, 
and continues beyond them; or that a shadow region close to a large lawn should also be 
categorized as a lawn. In order to successfully employ automatic classification, it is necessary to 
employ sufficiently flexible rules to somewhat emulate the knowledge of the human operator, 
and to allow the system some means of “reasoning,” an approach that is known in other fields as 
an “expert system.” A first step in this direction could be a system of rules (knowledge) and 
Dempster–Shafer theory (reasoning). We have applied this approach in the present work, and 
found it useful to define a RAG for the regions, providing topological information to the system. 
This remains a work in progress, but the results already obtained indicate that it could be used 
for interactive work when determining LULC change detection. Much work remains in order to 
obtain a completely automated system of LULC change detection; this should be a long-term 
objective but, meanwhile, we should concentrate on developing a semi-automatic (interactive) 
system that could help in the manual photointerpretation of LULC geospatial databases. This 
forms the objective of the present work, without losing the objective of developing as fully-
automated a system as possible. 

2.  Objectives 

To study and evaluate automated object-oriented image classification techniques applied to 
LULC databases  

To integrate high-resolution images, airborne laser scanner data, and database information to 
improve the efficiency of the methods 

To assess the use of these techniques for thematic geospatial database updating and change 
detection  

3.  Study areas and data pre-processing 

In this chapter, the study areas and the main characteristics of the data used in the project are 
described. 

Table 1 summarizes the data used from the different study areas. 
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Table 1. Available data from the study areas. 

Zone Data 

Alcalá LiDAR PNOA 2010 – 0.5 point/m2 

 DTM 2006 – stereo matching 

 Orthoimages RGB PNOA 2006. IR 2009 

 Corine 1990, 2000, 2006 

 SIOSE 

Valencia north LiDAR 2004 -1 point/m2 

 LiDAR PNOA 2009 

 ORTOS IR PNOA 2006, 2008 

 SIOSE 

 QuickBird 2004 RGB+IR+PAN 

Murcia LiDAR PNOA 2009 – 0.5 point/m2 

 DTM 2004, 2007 – stereo matching 

 Orthoimages IR PNOA 2007, 2009. 

 Corine 1990, 2000, 2006 

 SIOSE 

 

 

(a) 

 

(b) 

 

(c) 

Figure 1. Detail of 4-band image (B, G, R, and NIR) of Alcalá (a), Valencia periurban area 
(b), and detail of a 3-band image (IR, R, G) of Murcia with parcels overimposed(c). 
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3.1. Alcalá de Henares data 

This study area is an example of an urban area with several urban typologies from historical to 
industrial. Two types of data are available for Alcalá de Henares: high-resolution aerial 
imagery, and LiDAR data. This data were collected by the Spanish National Mapping Agency 
(NMA), as explained in Arozarena and Villa (2005). Usually, aerial imagery is acquired for the 
whole of Spain every two years, and LiDAR data is collected within the PNOA (Plan Nacional 
de Otofotografía Aérea) program. An example of an aerial image from PNOA can be seen in 
Figure 1.a, showing an urban area of Alcala de Henares city. This image has 4 colour bands 
(blue, green, red, and near-infrared), and was acquired in 2010 with a spatial resolution of 0.5 
m.  

Although the acquisition resolution was of 0.5 m, the image was resampled to a resolution of 1 
square meter, in order to combine the information of the original image with the LiDAR data 
that was resampled to this resolution, as explained next.  

The LiDAR data was used to produce a Digital Surface Model (DSM). The DSM was used to 
produce a Digital Terrain Model (DTM) (Martinez de Agirre and Malpica, 2010); then, 
subtracting these two, a normalized DSM (nDSM) model was obtained. PNOA images as well 
as the nDSM were geo- referenced, and a co-register was taken of both to a resolution of 1 
meter.  

3.2. Valencia data 

This area can be differentiated in two main areas: urban and suburban. Urban areas correspond 
to the centre of the city, with historical, urban planned, isolated buildings, etc. The suburban 
area (Figure 1.b) correspond to the northern part of Valencia, composed of a mix of rural 
(mainly agricultural parcels) and urban periphery buildings (including detached and semi-
detached houses, industrial, etc.). 

The area of Valencia has approximately 5,372 ha, and it has undergone important changes in 
LU/LC for the last decade, including the transformation and urbanization of large agricultural 
areas formerly covered by orchards and horticulture crops, and the removal of some industrial 
and agricultural structures. The objects for the analysis were defined using the plot boundaries 
derived from cadastral maps produced by the Spanish General Directorate for Cadastre 
(Dirección General de Catastro), with a scale of 1:1,000 in urban areas and 1:2,000 in rural 
areas. (Urbana y peri-urbana) 

High-resolution multispectral imagery and LiDAR data were available for both epochs. For the 
first epoch, QuickBird imagery acquired in February 2004 was available, with 11 bits/pixel 
radiometric resolution and four spectral bands (visible and near infrared). The multispectral and 
panchromatic bands were merged using the substitution method based on principal components 
transformation, obtaining a final spatial resolution of 0.6 m/pixel. The image was georeferenced 
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and orthorectified. LiDAR data were acquired in December 2003 by an ALTM-2033 sensor, 
and a digital surface model (DSM) having a grid size of 1 m was computed. In addition, a 
manually edited digital terrain model (DTM) was available. The normalized digital surface 
model (nDSM) was generated as the difference between the DSM and the DTM. 

Additional aerial images were acquired in August 2008 in the framework of the Spanish 
National Plan of Aerial Orthophotography (PNOA), with 0.5 m/pixel spatial resolution, 8 
bits/pixel radiometric resolution and four spectral bands in the visible and near infrared 
domains. These images were orthorectified and georeferenced. Panchromatic and multi-spectral 
bands were merged, and mosaicking and radiometric adjustments were applied as a part of the 
PNOA programme. LiDAR data were acquired in September 2009 using a RIEGL LMS-Q680 
sensor with a nominal density of 0.5 points/m2. The DTM (Figure 2.c) was computed by means 
of the iterative algorithm described by Estornell et al. (2011) that selects minimum elevation 
points and eliminates points belonging to above-ground elements such as vegetation or 
buildings. DSM (Figure 2.d) was computed using original LiDAR point cloud (Figure 2.a). 
nDSM (Figure 2.d) was calculated by the subtraction of the DTM from the DSM.  

 

 

 

(a) 

  

                                       
     

 Leyenda:   91                              154 m 
    

(b) 

  

                                        
     

 Leyenda:   91                               152 m 
   

 

(c) 

 

 Leyenda:   0                              43 m 
   

 

                                     
    

 

(d) 

Figure 2.  (a) LiDAR data point cloud, (b) DSM, (c) DTM y (d) nDSM. 
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3.3. Murcia data 

The study area of Murcia (Figure 1.c) corresponds to a rural area with crops, orchards, irrigation 
ponds, etc. In this area, changes are related to crops removal, new crops and creation of 
irrigation ponds. In this area, an official database provided by the CARM (Comunidad 
Autónoma de la Región de Murcia), where cadastral parcels are defined, was used to define the 
objects for the analysis. 

Aerial images from the PNOA are available for 2007 and 2009, with 0.5 m/pixel spatial 
resolution, 8 bits/pixel radiometric resolution and four spectral bands in the visible and near 
infrared domains. Images were orthorectified and georeferenced, mosaicking and radiometric 
adjustments were applied as part of the PNOA programme.  

LiDAR 2009 data was also acquired from the PNOA programme, with a nominal density of 0.5 
points/m2, acquired by a RIEGL LMS-Q680 sensor. DTM was obtained using similar methods 
and algorithms that those used in Valencia area.  

4.  Methodology 

The proposed methodology combines high resolution imagery, LiDAR data and database 
polygons as input data, generating two types of outputs: basic land cover classes, and land use 
related to the objects. In our tests, the objects are delineated using the cadastral database 
polygons, but any other type of polygon could be used. The legend is defined following the 
guidelines of the SIOSE database.  

The process can be divided into two main phases: 

• Segmentation and classification in basic land cover (LC) classes based on Dempster-Shafer theory. 

• Classification in land use (LU) of objects based on multi-source descriptive attribute extraction and 
decision trees. 

These two main procedures are described and tested separately. Then, a change detection 
approach is proposed based on the integration of both. The main flowchart is shown in Figure 3. 
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IMG LIDAR DB

K-Means 
Classification

Preprocessing

(DTM, DSM, 
nDSM, intensity)

(Intensity, nDSM)

Feature Extraction

Object Definition

From Image
• Spectral
• Spatial
• Structural

From LiDAR (3D)
• Point cloud
• Density profiles
• nDSM

From DB
• Shape

Posprocessing
(RAG)

Segments 
(Sub-objects)

(NDVI, WBI)

DS 
theory

Rule-based
Classification

Metaclasses + Graphs

Vegetation
Buildings
Roads and parking lots
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Water bodies

Objects

Shadows

Classification  of Objects
(Decision trees, DS,…)

RESULTS

From Image + LiDAR + DB
• Internal & external context

Basic Land cover
(low thematic detail)

Land use
(high thematic detail)

 

Figure 3. Overall flowchart for change detection. 

4.1. Classification in basic land cover  

The objective of this phase is to generate basic LC classes of the objects obtained from 
segmentation. This phase can be divided in 4 different steps: 

• Image segmentation  

• Region Adjacency Graph (RAG) 

• Classification improvement using Dempster-Shafer theory  

• Shadow removal 

In Figure 4 the workflow of this phase is shown. 
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DS 
theory 

GRAPH + CLASSES 

LU/LC 

 

nDSM 

Shadows 

R and NIR 

bands 

R and B 

bands 

DSM - DTM 

LiDAR 

Intensity 

PNOA (R, G, B, NIR) 

Segmentation 

NDVI 
Water layer 

index 

GRAPH (RAG) 

 

Figure 4. Basic land-cover classification flowchart.   

 

4.1.1.  Image segmentation 

Usually, the first step in the process of obtaining information from an aerial image to produce a 
land-cover layer is to perform data segmentation. The purpose of segmentation is to simplify the 
representation of an image in a way that is more meaningful and easier to analyze, trying to 
work at a region level rather than at pixel level, as animal vision does: rather than individual 
pixels, the brain of an animal “sees” homogenous regions that the brain is able to interpret in a 
subsequent process. There are many image segmentation methods, including clustering (Wu and 
Leahy, 1993), thresholding (Haralick and Shapiro, 1985), and region growing (Bins et al., 
1996). 

Fuzzy K-means (FK-means, also known as Fuzzy C-means) is an extension of the popular K-
means unsupervised classification method. While K-means identifies hard clusters (a point 
belongs to only one cluster), FK-means identifies soft clusters, where a particular point can 
belong to more than one cluster with a given probability. Therefore, FK-means is a more 
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statistically formalized method than K-means. The disadvantage is that it is more processor-
intensive, since it has to perform a larger number of operations.  

Although FK-means is not a proper segmentation method, we used this unsupervised 
classification technique to decompose the image into homogenous regions. The whole purpose 
of classification is to partition a set of objects into classes or categories; these classes are 
constructed so that a pixel in a given group is similar in some sense to those neighbouring it, to 
any other pixel belonging to the same group or class. The similarity between observations is 
stated in terms of the spectral distances between pixels. In the case of the FK-means 
classification used here, the only parameter determined by the user is the number of classes 
(Duda and Canty, 2002; Canty and Nielsen 2006). Unlike the process of region-growing 
segmentation, in which it is necessary to introduce two parameters—the seed points and a 
threshold—in an unsupervised classification algorithm such as FK-means, it is necessary to 
specify only the number of classes by which to classify the image; the higher the number of 
classes, the greater the number of regions to be generated in the segmentation. Since no more 
information is necessary from the user, the FK-means is an unsupervised classification.  

After the classification has been performed, the groups were labelled, which served to move 
them from class to regions, i.e., from a classification process to a segmentation process. This 
operation gave each region a unique identifier (Rodriguez-Cuenca et al., 2012).  

 

 

(a) 

 

(b) 

Figure 5.  (a) aerial image; (b) result of applying FK-means segmentation. 

 

Figure 5 shows the result of applying FK-means classification. This classification takes into 
account only the spectral characteristics of the image; however, with the addition of labelling 
and post-processing, it is converted in a real segmentation process. 
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4.1.2.  Region adjacency graph 

A graph is an abstract structure composed of vertexes and edges. Once the image is segmented 
into regions, a Region Adjacency Graph (RAG) is considered. Each region is associated with a 
node or vertex of the graph, and then edges are created between every pair of vertexes that 
represent neighbouring regions in the image.  

Each node of the graph introduces all the necessary information, such as number of pixels, 
barycentre, median of the spectral value for a band, median of the NDVI index, etc. 

 

 
1 

5 
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1 
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5 
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(a)                                           (b) 

 

Figure 6. (a) an image segmented with 9 regions and (b) its corresponding RAG. 
 

The RAG is applied to the segmented image using FK-mean to obtain an improved 
classification, merging regions that are probably of the same class (Jain et al., 1995). Figure 6 
shows an image with 9 regions and its corresponding RAG. 

The algorithm used to generate the RAG was the following: 

1. Scan the membership over the image and perform the following steps at each pixel index [i,j] 

2. Let r1 = a[i,j] 

3. Visit each neighbor [k,l] of the pixel [i,j]. For each neighbor, perform the following task 

4. Let r2 = a[k,l]. If r1 ≠ r2, then add an edge between nodes r1 and r2 
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4.1.3.  Image classification improvement using Dempster-Shafer theory  

The Dempster–Shafer theory was first put forward by Dempster (1968) and later expanded by 
Shafer (1976), and sometimes it is called the theory of evidence. Its development was motivated 
by the difficulty of representing uncertainty within probability theory. The application of 
Dempster–Shafer to geoscience has been reported several times (e.g., Malpica et al., 2007) 

The theory of fuzzy sets is a generalization of classical set theory. In classical set theory, an 
element does or does not belong to a set, whereas in fuzzy sets it can be said that an element has 
a degree of belonging to one or more sets. This degree is expressed by the following 
membership function: 

No 

Yes 

Yes 

No 

No Yes 

Pixel [i,j]    r1 = a[i,j] 

 

Pixel neighbor [k,l]      r2 = a[k,l] 

 

Image 

r1 = r2 

[i,j] y [k,l]  

same region 

[i,j] y [k,l]  

different region 

¿Pixel [i,j]    has 
more neighbors? 

¿are there more pixels 
[i,j] in the image? 

End of process 
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[ ]: 0,1A Ω→
      (1) 

where A(x) denotes the degree to which x belongs to A for each x ∈Ω, where Ω is in the 
classical set theory, the universal set. In Dempster–Shafer theory, it is called the frame of 
discernment.  

If the cardinality of Ω is h, there are 2h subsets of Ω. These are called propositions, and they are 
the elements of ℘(Ω), which is the set of subset of Ω, also called the power set of Ω. As one 
can see, the development of fuzzy set theory and its notations are similar to those of classical set 
theory.  

Given the frame of discernment Ω and a family not empty of subset C of Ω (with a suitable 
algebraic structure), a fuzzy measurement g in (Ω, C) is given by the following function: 

[ ]: 0,1A C→
      (2) 

that verifies the following constraints: 

[1] Boundary condition: g(C) = 0 and g(Ω) = 1 

[2] A ⊆ B then g(A) ≤ g(B) 

We will not digress further into fuzzy measurement; instead, the reader can consult the book by 
Klir and Wierman (1999) for further detail. This measurement is the basis of three theories: 
Probability theory, Possibility theory, and Dempster–Shafer theory. Since we are considering 
only the fusion of information, we will reduce our attention to the latter Dempster–Shafer 
theory, which we will briefly introduce next. A fuzzy measurement is said to be a belief 
measurement β if the following is verified: 

[ ]: ( ) 0,1β ℘ Ω →
     (3) 

β must verify 

 [1] ( ) 0, ( ) 1β φ β= Ω =  

[2] 
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1 2 1 21 n
n j j k n

j j k
A A A A A A A A Aβ β β β+

<
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Associated with all belief measurement is a plausibility measurement ζ, which is also a fuzzy 
measurement, and is defined by the equation: 
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( ) 1 ( )A Aζ β= −      (5) 

In Dempster–Shafer theory, a function is defined to characterize the measurements of belief and 
plausibility. This function is called the mass function, as follows: 

[ ]: ( ) 0,1μ ℘ Ω →
     (6) 

Such that ( ) 0μ φ =  and ( )
( ) 1

A
Aμ

∈℘ Ω

=∑
. This mass function is determined in a unique way by the equations: 

( )
( ) ( )

B B A
A Bβ μ

⊆

= ∑
     (7) 

( )
( ) ( )

B B A
A B

φ
ζ μ

∩ ≠

= ∑
     (8) 

The value of certainty has an inferior boundary, given by the plausibility, and a superior 
boundary, given by the belief. Plausibility and belief are analogous to optimistic and pessimistic 
measurements of certainty, respectively.  

When there are several sources for studying a phenomenon, in the case when a class has to been 
a assign to a region using several sources (since there are several sources, such as NDVI, 
LiDAR intensity, Geometry indexes, etc.), then the Dempster–Shafer theory becomes useful. 
Hermosilla et al. (2012a and 2012b) studied several of these features, and they have been 
studied to be introduced as rule to the Dempster–Shafer theory. So far it has only been 
introduced in its simple form. The basic mass function for each source is denoted by µ(i), where 
i=1,…,n are the sources. If the sources are assumed to be independent, then the orthogonal sum 
of the Dempster–Shafer theory can be applied, which will allow the fusion of information. The 
orthogonal sum is defined by the equation: 

( )( )
( ) ( )
( ) ( )

, , ,
i j

B C A
i j

i j
B C

B C
A A B C

B C
φ

μ μ
μ μ

μ μ
∩ ≠

∩ ≠

⊕ = ∈Ω
∑
∑

    (9) 

Kohlas and Monney (1995) described the formalization of the mathematical theory behind 
Dempster–Shafer theory. It is interesting to note that the orthogonal sum of Equation (9) is 
associative and commutative, which means that the sources could be mixed two by two, and the 
order is not important. Figure 7 shows the flow followed for entity extraction. 
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Figure 7. Diagram for entity extraction. 

Of the various scenarios within urban areas, the LC classification in this study utilized five basic 
classes that follow the Spanish high-resolution LULC classification, SIOSE. These classes 
(shown in Figure 8) comprise urban vegetation, buildings, communications (roads and parking 
lots), bare soil, and water bodies. 

Vegetation
Buildings
Roads and parking lots
Bare soil
Water bodies

 

Figure 8. LC classes legend. 

4.1.4.  Shadow removal 

4.1.4.1. Computing the shadow layer 

The detection of shadows is a common problem in the analysis of aerial or high-resolution 
satellite imagery. The main problem caused by shadows is the reduction or total loss of 
information in some areas of an image. The loss of information could lead to corruption of 
biophysical parameters derived from the pixel values, such as vegetation index (Leblon et al., 
1996). The effects of shadows are aggravated when abrupt changes in surface elevation occur, 
such as in urban areas, since buildings cast shadows that obscure information about other 
surface features in their surroundings. 
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Figure 9. Binary image with shadows detected using the nDSM and metadata from the LiDAR 
data 

The detection of shadows is achieved using the nDSM and the LiDAR metadata, such as the sun 
height at the time of the image acquisition (Martínez de Agirre and Malpica, 2012). (Example in 
Figure 9). 

4.1.4.2. Assigning classes to shadow regions 

The shading of an area can lead to incorrect classification or mapping for this type of coverage, 
due to the influence of the shadow in the spectral response. It has been observed that, in some 
cases, shadow regions caused false-positives in the NDVI, and in ad hoc indexing created to 
detect water bodies. Generally, bare ground, a road, or urban vegetation is classified as water 
when it is in shadow. Figure 10 shows a detail where this type of error occurred. 

 

(a) 

 

(b) 

Figure 10. (a) detail of aerial image with a shadow region close to a building; and (b) LULC 
classification with errors for shadow regions. In this case the shadow region has been classified 

as vegetation. 
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In order to refine the initial segmentation by FK-means, a clean-up was performed of those 
regions classified as water bodies that had a high probability of being shadows. The algorithm 
examined all the nodes, and used Dempster–Shafer theory to detect those regions with high 
probability of being shadows and water bodies, and these were assigned to the larger 
neighboring region. As it can be seen in this case, the classification was conducted not 
according to the spectral properties but to the spatial properties, because when a region is in 
shadow the spectral properties vary considerably. Thanks to the graph structure, it is possible to 
introduce a more intelligent form of classification to the process. So far, the rules employed 
have been very simple, but the improvement is very satisfactory, which demonstrates the 
potential of the proposed method. 

Figure 11 shows a detail of how to clean a shadow region labelled as a water body. Figure 11.a shows an 
aerial image corresponding to Alcala’s bullring and its surroundings; Figure 11.b shows the classification 
using Dempster–Shafer theory over the FK-means segmentation. It can be observed how the seating in 
shadow has been incorrectly classified as a water body, which would be impossible in this context. Figure 
11.c shows the shadow layer, and Figure 11.d shows how the error has been resolved by reclassification 
through Dempster–Shafer theory; the region initially classified as a water body is automatically 
reclassified as a building, since this is the class assigned to the larger neighbouring region. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 11. (a) Detail of the aerial image showing Alcala’s bull fighting arena and surroundings; 
(b) Initial classification of LULC with the Dempster–Shafer theory; (c) Shadow layer computed 
from the nDSM and metadata; and (d) Second application of Dempster–Shafer theory, using the 

RAG, assigning shadow regions to other classes when necessary. 
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4.2. Multi-source attribute extraction and land use classification 

This phase (Figure 12) is based on the definition of objects from a database (cadastral plots, 
SIOSE polygons, etc.), the extraction of an exhaustive set of descriptors from images, LiDAR 
and the database and the classification of the objects in different land uses. It can be divided in 
two steps: feature extraction and object-based classification. 

 

IMG LIDAR DB

Preprocessing

(DTM, DSM, 
nDSM) Object Definition

From Image
• Spectral
• Spatial
• Structural

From LiDAR (3D)
• Point cloud
• Density profiles
• nDSM

From DB
•Shape

Objects

From Image + LiDAR + DB
•Internal & external context

Feature Extraction

Classification  of Objects
(Decision trees, DS,…)

 

Figure 12. Land use classification flowchart. 
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4.2.1. Feature extraction 

Descriptive features were extracted from objects (both, segmented and cadastral polygons) 
attending to three different object aggregation levels: object-based, related to internal context 
and related to external context (see Figure 13), as reported by Hermosilla et al. (2012a). Object-
based features describe the properties of each object (plot) considered as a single unit. They 
were computed using the object-based feature extraction software FETEX 2.0 (Ruiz et al., 
2011). These descriptive features provide information about spectral, textural, geometrical, and 
3D properties. Spectral features inform, through the intensity values of the pixels contained in 
the plots, about the objects’ overall spectral behaviour in the different spectral bands used.  

 

 

Figure 13. List of features computed and graphic examples. 
 

Mean standard deviation, as well as minimum and maximum of the intensity values of the 
pixels for all available bands, and normalized difference vegetation index (NDVI) and water 
body index (WBI) images were computed for each object.  

Figure 14.a shows the NDVI image where can be observed (details b and c) how regions with 
vegetation in the aerial image are represented by high levels of gray colour in the digital NDVI 
image. 
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(a) 

 

 

(b) 

 

 
(c) 

Figure 14. (a) NDVI image obtained with equation (1); (b) detail of RGB area with vigorous vegetation; (c) 
corresponding area in the NDVI image. 

Water bodies have a distinctive spectral signature, since they reflect very little of the 
electromagnetic spectrum, with only a small peak in the blue band (if this is the colour of the 
water in the image). A similar index to the NDVI was computed using the red and blue bands: 

B RWBI
B R
−

=
+        (10) 

where WBI represents Water Body Index, and B and R are the blue and red bands, respectively. 
This index produces a high value for water bodies but also false-positives in shadow regions. 
Figure 15 shows a detail of the image after applying the water body index. As can be seen, 
swimming pools are assigned higher values. 
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Figure 15.  Layer produced with the Water Body Index 

4.2.1.1. LiDAR-based features 

The LiDAR data not only provides the DSM and DTM, but also intensity information. Low 
LiDAR intensity values are obtained in asphalt areas. This was used to detect roads and parking 
lots in the image. As certain buildings have asphalt roofs, the model incorporates the Dempster–
Shafer theory rule of intensity of LiDAR data with that from the nDSM, so only regions that 
have a low intensity value combined with a low elevation would be classified as roads or 
parking lots. Figure 3.8 shows the layer for the LiDAR intensity, where roads, parking lots and 
some buildings (presumably with an asphalt roof) are distinguished.  

Texture features quantify the spatial distribution of the intensity values in the analyzed objects. 
The following descriptive features were derived: histogram kurtosis and skewness; descriptors 
derived from the grey level co-occurrence matrix (GLCM) and proposed by Haralick et al. 
(1973); edgeness factor (Sutton & Hall, 1972); and semivariogram-based descriptive features 
(Balaguer et al., 2010). Three-dimensional features were derived from the nDSM computed 
from LiDAR data, each object being characterized by the mean, standard deviation and 
maximum values of the heights. Geometrical features describing the dimensions of the objects 
and their contour complexity were computed: area, perimeter, compactness (Bogaert et al., 
2000), shape index and fractal dimension (Krummel et al., 1987; McGarigal & Marks, 1995). 

Some of the context-based features were based on the area covered by buildings and vegetation 
inside each object, since this distribution is strongly related to the different urban typologies. 
Building and vegetation masks were obtained as a result of the LC segmentation/classification 
in basic classes. Buildings and vegetation correspond to the sub-objects inside the plots. 

Internal-context features describe an object by characterizing the internal sub-objects of the 
plots. Both 2D and 3D features describing the buildings inside each object were computed. The 
2D features consist of the built-up area and the percentage of built-up areas in an object. The 
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latter feature – usually referred to as building coverage ratio (BCR) or sealed surface (Yoshida 
and Omae, 2005; Van de Voorde et al., 2009; Yu et al., 2010) – is computed as: 

100·
Object

Building

A
A

BCR =
     (11) 

where ABuilding is the built-up area, and AObject is the area of the considered object. Buildings 
were also characterized by a set of 3D features describing their heights, using the mean, 
standard deviation, and maximum values from the nDSM. Similarly to (eq. 11), the percent-age 
of surface covered by vegetation within an object was defined, and additionally a set of 
statistical descriptors of height and status of vegetation sub-objects (mean and standard 
deviation of nDSM and NDVI, which were computed solely from groups of vegetation pixel) 
was computed. 

4.2.1.2. Spatial context features 

External context is described by considering the spatial relations of adjacent objects by means of 
building-based, vegetation-based, geometrical and adjacency features. Adjacency between 
objects was characterized based on the graph theory (Laurini and Thomson, 1992) by using the 
number of neighbours with surrounding objects, as well as the mean and standard deviations of 
the centroid distances between adjacent objects. The shape, size, and number of buildings per 
block are often related to their socio-economic function and determine the area and volume for 
an urban block. Therefore, the land use of an urban block may be indicated by the quantitative 
observations related to the buildings present in it (Yoshida and Omae, 2005). Thus, urban 
blocks were also characterized by the built-up area and the built-up percentage. The height 
distribution of the buildings contained in an urban block was described using the height mean 
and standard deviation values obtained from the nDSM. Features related to the volumetric 
information of buildings were also considered. Thus, the mean volume was computed as the 
total volume of buildings divided by the number of buildings contained in the block. In a similar 
manner to the internal context features, vegetation distribution was characterized using the 
vegetation cover ratio, as well as the mean and standard deviation values of the nDSM and 
NDVI obtained only from the vegetation area masked within the super-object. Finally, the 
geometrical properties of the urban blocks were described using the features area, perimeter, 
compactness, shape index, and fractal dimension. 

4.2.2.  Object classification 

4.2.2.1. Object and class definition 

The basic unity employed has been defined combining rural cadastral sub-parcels and urban 
cadastral parcels. Rural sub-parcels are the internal divisions on the cadastral parcels as a 
consequence of the different crops and land uses. Class definition has been done using 
photointerpretation techniques, using as a reference the building typologies defined in the 
SIOSE data model (Instituto Geográfico Nacional, 2007), differentiated by its use and its 
morphology: isolated building, mixed urban, semi-detached house, detached house and industrial. In order to 
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perform a more exhaustive description, urban building has been divided in closed urban and 
historic, according to the subdivisions of the mixed urban class in the SIOSE (some graphic 
examples are shown in Figure 16). Furthermore, necessary classes have been defined to perform a 
complete classification of the study areas: arable lands and cultivated and tree crops. 

 
Figure 16. Examples of LU classes defined (Valencia area): historical (a), closed urban (b), open urban (c), industrial 

(d), semidetached housing (e), detached housing (f), cropland (g), arable land (h), citrus orchard (i), and bare soil (j). 

In the case of the urban and rural classification study performed in Valencia, there are defined 
more detailed classes due to the variety of different building and agriculture classes existing in 
the area. The urban classes defined were: historical buildings, urban buildings, open urban buildings, semi-
detached houses, detached houses, industrial/warehouse buildings, religious buildings, commercial buildings, public 

buildings, including schools, universities, sport facilities and civil and governmental buildings, 
and gardens and parks. The agricultural classes defined were: arable lands, citrus orchards, irrigated 

crops, carob-trees orchards, rice crops, forest and greenhouses. 
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4.2.2.2. Selection of descriptive features 

In Table 2 and 0 the complete set of descriptive characteristics employed in the classification is 
shown: 

 

Table 2. Descriptive features relative to the object. 

Object features 

G
ro

u
p

 I
 

Spectral Mean Infrared MeanIR 
 Std. Dev Infrared DesvIR 
 Min. Infared MinIR 
 Max. Infrared MaxIR 
 Mean Red MeanR 
 Std. Dev. Red DesvR 
 Min. Red MinR 
 Max. Red MaxR 
 Mean Green MeanG 
 Std. Dev. Green DesvG 
 Min. Green MinG 
 Max. Green MaxG 
 Mean NDVI MeanNDVI 
 Std. Dev. NDVI DesvNDVI 
 Min. NDVI MinNDVI 
 Max. NDVI MaxNDVI 
Texture Mean Border Intensity MeanIB 
 Std. Dev. Border Intensity DesvIB 
 Skewness Skewness 
 Kurtosis Curtosis 
 Uniformity Uniformidad 
 Entropy Entropia 
 Contrast Contraste 
 Inverse Moment of Difference IDM 
 Covariance Covar 
 Variance Varianza 
 Correlation Correlación 

G
ro

u
p

 I
I 

Shape Compactness CompacOB 
 Shape Index IFormaOB 
 Fractal Dimension DfOB 
 Area AreaOB 
 Perimeter PerimOB 
Height Mean Height MeanH 
 Std. Dev. Height DesvH 
 Max. Height MaxH 
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Descriptive features relative to the internal and External context. 

Internal context features 
Buildings Mean Height MeanHED 
 Std. Dev. Height DesvHED 
 Max. Height MaxHED 
 Built-up Area SupED 
 Bulit-up Percentage Area  BCRED 
Vegetation Mean Height MeanHV 
 Std. Dev. Height DesvHV 
 Mean NDVI MeanNDVIV 
 Std. Dev. NDVI DesvNDVIV 

G
ro

u
p

 I
II

 

 Percentage Area PercV 
External context features 

Connectivity Number of Relations Nrel 
 Mean Distance MeanDrel 
 Std. Dev. Distance DesvDrel 
Urban morphology Mean volumen per building VolM 
 Percentage of built area BCRSO 
 Built area SupEDSO 
 Mean building height MeanHSO 
 Std. Dev. Building height DesvHSO 
Vegetation Mean Height MeanHVSO 
 Std. Dev. Height DesvHVSO 
 Mean NDVI MeanNDVIVSO 
 Std. Dev.  NDVI DesvNDVIVSO 
 Percentage Surface PercVSO 
Shape Compactness CompacSO 
 Shape Index IFormaSO 
 Fractal Dimension DfSO 
 Area AreaSO 

G
ro

u
p

 I
V

 

 Perimeter PerimSO 

  

Using the value of the 64 descriptive features obtained per object, their relevance in the 
classification procedure was studied using stepwise linear discriminant analysis. For this 
purpose, a training sample set of objects was used, computing the 64 descriptive features per 
object. In order to determine the most significant features, the sample set was analysed 
separately using the four defined feature groups, combined successively: 

• Group I: level object features relative to the image information: spectral and texture. 

• Group II: level object features relative to the geometry and height.  

• Group III: internal object context features or sub-object features. 

• Group IV: external object context features or block features. 

Figure 17 shows graphically the global predicted accuracy when including features stepwise to 
the discriminant analysis classification for each defined feature groups. The use of the object 
descriptive features related to the image yields the highest global accuracy, reaching the 80% 
when up to 20 features are included in the discriminant model. The inclusion of new features do 
not seem to affect the predicted global accuracy of the model.  

Geometric and height features produce the lower global accuracies, stabilizing their values 
around 50%. Meanwhile, the global accuracy of the features relative to the internal context 
becomes stable at 65%.  
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Features related to the external context make the accuracy stable around a global accuracy of the 
70%. These features (build up area percentage, mean height and surface percentage covered by 
vegetation) have a synergic effect in the classification.     
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Figure 17. Predicted accuracy using stepwise linear discriminant analysis for the 25th first 
variables when combining all the groups compared to those obtained using independent 

variables. The names of the variables correspond to the features included when combining all the 
groups. 

 

When combining all the descriptive features included in the discriminant analysis models of the 
defined groups, a synergic effect occurs, resulting in a significant increase of the global 
accuracy (see Figure 17). As features are progressively included in the model, there is an 
increase of the global accuracy. This accuracy represents an ascending trend that stabilises 
around the 85% of the variables added to the model.  

4.2.2.3. Classification procedure 

For classification, training samples were collected by assigning classes to objects (cadastral 
plots) by visual photointerpretation, applying two main criteria: representativeness of samples 
selected per class and homogeneity of the spatial distribution of samples in the study area. A 
restricted randomization scheme (Chatfield, 1991) was applied in this case, consisting of a 
random sample selection followed by a monitored sample reallocation and selection in order to 
maintain a minimum number of samples per class, to obtain a representative sample of each 
class, and to represent the changes in the area. As a result, 1,458 training samples were selected. 
A total of 128 objects (8.8%) of the samples corresponded to urban changes, concerning 
building construction, destruction, or use change. 
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Classification was carried out using decision trees constructed with the C5.0 algorithm 
(Quinlan, 1993), combined with the boosting technique. This algorithm divides the sample set 
by using mutually exclusive conditions, until homogeneous subgroups are generated, i.e. all the 
elements in a subgroup belong to the same class, or a stopping condition is satisfied. The 
stopping condition defined in this work is the minimum number of training cases that must 
follow each node. It was fixed to 5 cases, constraining the degree to which the initial tree fits the 
training data. 

In order to maximize the efficiency of the number of available samples, the accuracy of the 
classification was assessed using leave-one-out cross-validation. This method uses a single 
observation from the original sample set as validation data, and the remaining observations as 
training data, iterating until each observation in the sample set is used for validation once. The 
evaluation of the classification was based on the analysis of the confusion matrix, which 
compares the class assigned to each sample to the reference class obtained by 
photointerpretation. From this confusion matrix, user’s and producer’s accuracies per class are 
computed, measuring the commission and omission errors, respectively. 

4.3. Change detection 

The method used in this study is based on combination of the two phases previously described 
(Figure 3), comparing classification of two different epochs or comparing the classification with 
a database. The evaluation of the change detection was evaluated as described in section 4.3.1. 

4.3.1.  Change detection evaluation 

The sample selection was done using a semi-random sampling, ensuring minimum number of 
samples per class. Thus, the total number of samples was 1,458, from which 299 (20.5%) 
corresponded to changes between 2004 and 2008. Table 3 specifies the number of samples per 
class and time difference between epochs. The spatial distribution of the samples is shown in 
Figure 18. 

Table 3. Evaluation samples from the area of Valencia. 

  (to) 2008 
Reference  arable citrics bare soil historic urban suburban industrial 

(from) 2004 

arable 187 45 35   10     
citrics 71 137 22   5     

bare soil 1   82   44 35 10 
historic       213       
urban     1   232   1 

suburban         1 221   
industrial     15   3   87 

Total number of samples = 1458 

Total number of change samples = 299 (20,5%) 
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(a) 

 

 

(b) 

Figure 18. (a) Study area from the north area of Valencia (2008 PNOA orthoimage) and (b) 
distribution of selected samples within the study area. 

 

The change detection efficiency is defined by adding the number of correctly detected changes 
to the number of correctly detected unchanged objects. Detectable errors are given when 
unchanged plots are wrongly detected as changed, whereas undetectable errors are produced 
when plots where changes occurred are detected as unchanged. The combination of detected 
changes and detectable errors composes the number of plots that would be manually reviewed in 
an updating process (Table 4). 

Table 4. Distribution of chases and errors in the change detection assessment. 

  Classification 

  Unchanged Changed 

Reference 
Unchanged Coincidences Detectable errors 

Changed Undetectable errors Detected changes 
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5.  Results 

In this chapter, the results are divided attending to the two different phases: Phase I, to obtain 
the basic land cover classes; and Phase II, based on the multi-source attribute extraction and 
land use classification. Finally, results of the change detection procedure are shown. 

5.1. Phase I results: generation of basic land cover classes 

From the input data is obtained the segmentation using the Fuzzy K-Means, decomposing the 
image into homogeneous regions. The results of the segmentation can be seen in Figure 19.  

 

 

(a) 

 

(b) 

Figure 19.  (a) study area from Alcalá (PNOA orthoimage) and (b) segmented image. 
 

As can be noted, most of the shadows are detected as regions. Therefore, after the segmentation 
and the improvement of the classification, shadows must be eliminated. After the segmentation 
and the application of the simple rules with Dempster–Shafer theory to the FK-means 
segmentation, the result is an image classified in the basic land cover classes (Figure 20). The 
image can show false-positive water bodies in shadow regions, as discussed previously. 

 



  39 

 

Vegetation
Buildings
Roads and parking lots
Bare soil
Water bodies

 

Figure 20. Initial LC classification with false-positives (some shadows have been assigned to water 
bodies). 

These false-positives are corrected using the RAG; every shadow region is assigned to the class 
of the larger neighbouring region. This process will be improved in the near future, using 
Dempster–Shafer theory and optimized rules (Hermosilla et al., 2012b). If rule conflict occurs, 
Dempster–Shafer theory could help to solve the conflict using the orthogonal sum. However, 
simple rules established so far produce satisfactory results, as shown in some details of Figure 
21. 
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Figure 21. Classification with correction of the errors in the shadow regions. 
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Figure 22 shows four details, where false-positive water bodies due to shadow regions can be 
seen, and how they are corrected by means of assigning the class of the larger neighbour. Figure 
22 (a,d,g,j) shows the details in the aerial PNOA image. In the second column, Figure 22  
(b,e,h,k), the initial classification, with the false-positives for the water bodies; and finally, in 
the third column (Figure 22(c,f,i,l), how the method has corrected most of these false-positives.  

The results shown in Figure 21 from the Alcalá area are difficult to evaluate numerically 
without reliable ground-truth data. A first visual analysis of the results shows that they are 
satisfactory, specifically in the classification of buildings and water bodies. With the objective 
of expressing a numerical result that quantifies the accuracy of the detection in comparison with 
a LULC database. The spatial classification produced by the proposed method (from PNOA and 
LiDAR images for 2010) was compared with the SIOSE polygons of the study area for 2005. 
The SIOSE assignment cannot be considered to be accurate or exact, because it is done by 
photo-interpretation and by round numbers; however, it will serve to contrast the differences 
between the two years (2005, 2010), and whether some changes have occurred.  
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Figure 22. (a,d,g,j) Details of the aerial image PNOA; (b,e,h,k) corresponding basic land cover 
classification with false-positives for shadow regions; and (c,f,i,l) final results with shadow 

corrections. 
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The same procedure has been applied to the suburban area of Valencia for 2004 and 2008 
Figure 23.a and Figure 24.a respectively). The results are shown in Figure 23.b and Figure 24.b. 
There have been many changes in this area between these two survey dates. Some buildings 
have disappeared (upper-right of the image) and others are new constructions (left part of the 
image). Note how the two roundabouts at the upper centre of the image, have been detected 
perfectly for both dates, even taking into account the different radiometry; therefore there is no 
change indicated in this respect. Other methods generally fail when the radiometry is so 
different.   

 

(a) 

 

 

(a) 

 

(b) 

 

 

(b) 

Figure 23. (a) Detail of the Qickbird 
image in 2004 and (b) classification of 

the image in 2004. 
 

 Figure 24. (a) Detail of the PNOA 
image in 2008 and (b) classification of 

the image in 2008. 

 

5.2. Phase II results: multisource attribute extraction and land use 

classification 

The phase II of the methodology was applied in the urban area of Valencia, obtaining an overall 
accuracy of 84.8%. In Figure 25, some examples of the classification in different areas are 
shown. For this area, the performed classification had a higher level of detail, introducing new 
sub-classes in both types of parcels (rural and urban). 
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Figure 25. Examples of different areas of the urban area of Valencia with their classifications. 

Per-class user’s and producer’s accuracies are high in the agricultural classes, reaching values 
higher than 90% in the case of arable lands, citrus orchards, carob-trees orchards, rice crops, forest, and 
slightly lower for irrigated crops (with values around 88% for both accuracies) and the user’s 
accuracy of the class greenhouse.   

Among the urban classes, the lowest accuracies and the most unbalanced values were obtained 
for classes commercial and religious buildings. 

A graphical representation of the classification confusion matrix is shown in Figure 26. 

 

Figure 26. Graphic representation of the classification confusion matrix. Rows represent 
reference class and columns classified data. 
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The confusion matrix shows that commercial buildings had a poor performance and presented 
several misclassifications with industrial/warehouse and public buildings classes.  Religious buildings 
class producer’s accuracy reached a very low value (37%) due to the confusion with classes 
urban and public buildings. Medium user’s and producer’s accuracy values (70%) were achieved 
for public buildings and semi-detached houses. Public buildings presented a high degree of confusion 
with most of the building-related classes, due to their heterogeneity, and the fact that these 
buildings usually have significant morphological differences, producing misclassifications. 
Some particular public building plots containing covered sport facilities were erroneously assigned 
to industrial/warehouse buildings and vice versa. Semidetached houses were especially confused with 
detached houses, due to their obvious structural similarities. Gardens and parks presented unbalanced 
accuracies, due to the misclassification with citrus orchards and public buildings. Other building-
related urban classes achieved better classification performances with slight confusions between 
them, being especially significant for the pair of classes historical and urban, as shown in the 
confusion matrix (Figure 26).  In Figure 27 the user’s and producer’s classifications are shown. 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
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Figure 27. Classification user’s and producer’s accuracies for land use urban classes. 
 

The urban classification of Valencia is shown in Figure 28.b. Figure 28.a corresponds to the 
PNOA image from 2008 in false infrared visualization. 

 



 

44 

 

 

 

(a) 

 

 

(b) 

Figure 28. Land se classification of the city of Valencia. 
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5.3. Change detection results 

5.3.1.  Change detection in periurban areas 

Change detection results are shown in Table 5. The global rate of correctly detected changes or 
no-changes is 98.7%. The percentage of objects (cadastral parcels, polygons, etc.) to be visually 
reviewed by photointerpretation and field visits in a hypothetical change detection procedure at 
production level would be 9%, mostly corresponding to plots with actual changes (8.1%). 
Height information provided by the nDSM is critical to discriminate between different building 
typologies, and between buildings from bare soil, correcting most of the detectable and 
undetectable errors and improving the performance of the change detection process. Figure 29 
shows an image detail of the study area and the change detection represented for the selected 
samples in a comparative test carried out with and without considering 3D data, where the 
significant reduction of undetectable errors and the increase of detected changes are perceptible. 
These results are shown in Figure 30, where LiDAR derived information allows to reduce both, 
commission (orange) and omission (red) errors, increasing the rate of detected changes. 

Table 5. Change detection assessment concerning urban-related changes. 

  With LiDAR data 

  Unchanged Changed 

Reference 
Unchanged 90.6% 0.9% 

Changed 0.4% 8.1% 

 

 

Figure 29. Detail of the study area in infrared colour composition for the years 2004 (a) and 
2008 (b); and maps showing change detection results of samples without considering (c) and 

considering (d) 3D features. 
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Figure 30. Change detection method comparison using or not using LiDAR. 

5.3.2. Change detection in rural areas 

Change detection method was also performed in rural areas from Murcia (Figure 31), where 
targeted changes where searched. These changes were new irrigation pools, crops removal and new 

crops. Due to the low number of the new irrigation pools, this class was not evaluated. 

 

Figure 31. Detail of the PNOA image from 2008 of the testing area of Murcia. 
 

The results of the evaluation are shown in Table 6. From 159 testing plots of the crops removal 
type, 140 changes were detected, which means an omission error of 19 (changes not detected). 
For the new crops type, from 220 changes, 196 were correctly detected, leaving 24 parcels where 
no change was detected. Therefore, the total accuracy rate of change detection in the rural area 
was 89.09%, considering new crops and crops removal. In Figure 32, the number of detected and 
not detected changes for the two change typologies can be seen.  



 

  47 

Table 6. Results of the evaluation of the change detection method in rural areas. 

   Changes  Detected  Not detected  % success  

Crops removal  159  140  19  88.05%  

New crops  61  56  5  91.80%  

Total  220  196  24  89.09%  
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Figure 32. Changes detected and not detected of the two evaluated change types. 
 

The total number of changes detected in the rural area is shown in Table 7 from a total of 39,964 
studied parcels. In Figure 33, two details of the changes detected in the rural area are shown. 

Table 7. Change detection values. 

   Nº of changes detected  

New irrigation pools  17 

Crops removal  2172 

New crops  1631 

Total changes  3820 
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Figure 33. Two details of changes detected. 

5.4. Application to quantify polygon attributes in SIOSE database 

The spatial classification produced by the first part of proposed methods (generation of basic 
land cover classes) was compared to the SIOSE polygons of the urban study area of Alcalá for 
2005. The SIOSE assignment cannot be considered to be accurate or exact, because it is done by 
photo-interpretation and by round numbers (multiples of 5); however, it will serve to contrast 
the differences between the two epochs (2005, 2010), and whether some changes have occurred.  

Table 8. Change detection values for polygon 104. 

 

 

 

 

 

 

 

 

 % Proposed method  % SIOSE 

Buildings 38.6 80 

Vegetation 27.5 10 

Roads 23.7 5 

Bare soil 9.3 0 

Water bodies 0.9 5 
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(a) 

 

(b) 

Figure 34. SIOSE polygon 104 (a) over the PNOA image and (b) over the LC classified image. 

At first sight, the results obtained by the proposed method for polygon 104 (Figure 34) differ 
from those obtained manually by the operator when the SIOSE data was classified in 2005 
(Table 8). While the SIOSE assigned 80% building coverage to this polygon, 10% for 
vegetation, 5% for roads, and 5% for swimming pools, the proposed method assigned around 
40% for buildings, 25% for vegetation, 25% for roads, 10% for bare ground, and 1% for water 
bodies or swimming pools. If we assume that there was no change within this polygon between 
2005 and 2010, we can analyze the differences visually. The 80% percentage for buildings 
assigned by SIOSE appears excessive, and the 40% calculated by the proposed method would 
be more accurate. Similarly, the vegetation- and road coverage calculated by the proposed 
method seems to be more realistic than the values provided by SIOSE. However, in the case of 
vegetation, it is more difficult to decide which value is more reliable; visually, it appears to be 
higher than the 10% assigned by SIOSE; however, the 25% indicated by the proposed method 
could be too high, because the shadow regions are considered as vegetation whereas they could 
be other coverage types (roads or bare ground). Finally, for the water bodies, there is a 4% 
difference between the proposed method and the SIOSE. This is due to the SIOSE rounding up 
the coverage percentages to multiples of 5, whereas the proposed method determines a more 
precise percentage. Therefore, for polygon 104, the human operator for SIOSE estimated 5% 
water coverage, which is the minimum percentage for SIOSE, whereas the proposed method has 
estimated 1% coverage. 

Table 9. Change detection values for polygon 127. 

 

 

 

 

 

 % Proposed method  % SIOSE 

Buildings 27.9 75 

Vegetation 45 10 

Roads 19.4 10 

Bare soil 7.2 0 

Water bodies 0.5 5 
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(a) 

 

(b) 

Figure 35. SIOSE polygon 127 (a) over the PNOA image and (b) over the LC classified image. 
 

As with polygon 104, there appear to be important differences in polygon 127 (Table 9 and 
Figure 34) between the percentages assigned by the manual SIOSE process and the automatic 
process of the proposed method. Although, visually, it could seem that the building coverage 
assigned by SIOSE is too high (75%, versus 30% using the proposed method), the SIOSE 
estimate could be more accurate in this case. The proposed method shows vegetation coverage 
for some regions that actually correspond to small detached or semidetached houses of low 
elevation. Similarly, the 45% vegetation coverage estimated by the proposed method seems to 
be higher than reality. However, the percentage of 10% given by SIOSE seems to be a slight 
underestimate, compared to what can be seen in the aerial image from 2010, although it could 
be accurate for 2005.  

The 10% difference in road coverage could be explained by the greater precision of the 
proposed method, compared with the manual SIOSE classification; or because this difference 
represents a real change between 2005 and 2010. SIOSE does not indicate bare soil coverage in 
this polygon, while the proposed method indicates 5% coverage; this could be the difference 
between the two survey years. The difference for water coverage could be explained in the same 
way as for polygon 104. 

In the same way, comparison with SIOSE polygons was done using the multi-source attribute 
extraction and land use classification in the urban area of Valencia. 

Although the SIOSE database indicates a unique edification typology, it is produced an 
exception in the case of the class mosaic. The mosaic is defined as coverage union (land uses) which 
geometrical distribution and division between them is clearly perceptible. In practice, in urban 
areas mosaics contain polygon groups whose areas are less than the minimum, and these are 
generally isolated from the population centres surrounded by farmlands. 
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Figure 36 shows an example of a SIOSE polygon and the result after object classification. This 
example is a mosaic type polygon where industrial and urban land-uses are distinguished and 
where the area covered by buildings are detailed: planned urban and industrial. When combining 
building detection techniques and object-based automatic classification, four different types of 
buildings can be distinguished. Thus, a more accurate estimation of the build up area is achieved 
than that registered in the SIOSE.  

 

Metres
    

Metres
 

 

Legend:  Bare/arable lands and orchards     Historical   Open urban     Detached housing 

          Croplands      Planned urban     Industrial     Semi-detached housing     Building 

 

SIOSE  Classification  

Build up area 50.5% Build up area 21% 

 55% Planned urban  69,1% Industrial 

 45% Industrial  15,7% Planned urban 

   08,4% Semi-detached housing 

   06,9% Detached housing 

Figure 36. Image, classification results and build up area percentage described in the SIOSE and automatically 
estimated (total and per class) from a mosaic type polygon where urban from industrial uses can be distinguished. 

Although there are two building classes in the mosaic, usually the drawn SIOSE polygons in 
urban areas only inform about a unique class, with the consequent loss of detail. For example, in 
Figure 37 a characteristic SIOSE polygon in a planned urban area is represented. These areas are 
basically composed of planned urban buildings, but often coexist with other building typologies 
such as isolated buildings, detached houses or even industrial buildings. The use of automatic 
classification techniques allows a more detailed typology disaggregation, which means a more 
complete description of the polygon. 
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The coexistence between planned urban and historic, and the fact that the contiguous polygon 
belong to a historic use, points out that the SIOSE polygon geometry analysed could be redefined 
according to the classification results, so that the buildings of each polygon could present a 
major homogeneity in their typologies. Thus, the use of automatic techniques would simplify 
the automatic SIOSE polygon delimitation with a better objectivity than visual perception 
techniques over areas with difficult discrimination, as in the case presented in Figure 38.a and 
Figure 38.b, both belonging to the boundaries of the SIOSE polygon showed in Figure 37. 

 

Metres Metres
 

 

Legend:  Bare/arable lands and orchards     Historical   Open urban     Detached housing 

          Croplands      Planned urban     Industrial     Semi-detached housing     Building 

 

SIOSE  Classification  

Build up area 75% Build up area 69% 

 100% Planned urban  71,1% Planned urban 

   15,5% Historical 

   07,4% Open urban 

   05,1% Industrial 

   00,9% Semi-detached housing 

Figure 37. Image, classification results and build up surface percentage described in the SIOSE 
and automatically estimated (total and per class) from an urban planned polygon. 
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a. 
Metres

   
Metres

 

b. 
Metres

   
Metres

 

Figure 38. Example of areas where the automatic classification could help in the definition of 
the SIOSE polygons (which boundaries are represented with black colour lines). 

 

Presented examples show the potential of the automatic methodologies of building detection 
and land-use classification employing remote sensing data for the estimation and calculation of 
useful parameters for the geo-spatial land-use/land-cover database creation/update. Results 
show a higher accuracy and higher detail level than the obtained when using photointerpretation 
methods, which enable a more objective and deeper characterisation of the urban classes in 
urban and periurban areas.  
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6.  Conclusions 

A semi-automatic method has been proposed for object-based classification of images and 
change detection at two levels of thematic detail. 

During the first phase of the methodology, the RAG data structure allows the introduction of 
topological properties that are used to improve the initial segmentation of the image. Dempster–
Shafer theory allows an improvement of the initial segmentation and classification.  

In the second phase, the exhaustive set of features extracted per object including spectral, 
texture, shape, 3D, internal and external context indices, enables a complete description of 
objects to obtain high accuracy classification results. 

The proposed methodology can determine the percentage coverage for SIOSE polygons, being 
useful for change detection and database updating. 

Future works should be focused in the integration of Dempster–Shafer theory and decision 
trees, as well as the application of direct classification techniques for change detection, extended 
to a broader variety of areas and landscapes. 

7.  Future Studies 

During last years, pixel-based change detection methods have been used for change detection in 
objects. Berberoglu and Akin (2009) describe various change detection methods such as Change 
Vector Analysis (CVA), image rationing and image differencing, using an object-oriented 
classification in order to increase precision and to reduce the time of classification. 

The most widespread object-based classification methods usually start from a multitemporal 
segmentation of multispectral images. In this procedure images from different epochs are 
segmented in order to obtain the difference between them and/or the information that contain in 
the time interval of the images. Gamanya et al. (2009), for example, segments the images using 
multispectral features, textures, object size and behaviour at different scales in different epochs 
to compare and classify them. Thus, changes can be detected between the segments of the two 
studied epochs. In a similar way, Huang et al. (2010) performs image segmentation from two 
epochs using textures and intensities. Then, changes occurred between the segments are 
obtained using a segmented image differentiation. 

As noted, segmentation is common in several works, but some modifications are noticed in the 
change detection procedures, such as in Niemeyer et al. (2007), that use correlation variables for 
the segment comparison, or in Bontemps et al. (2008), where a classification is done on the 
basis of a previous object definition rules before the differentiation.  

Other procedures are focused in the element classification from different epochs. In Hall and 
Hay (2003), despite performing a segmentation using various scales, each segment is classified 
using the mean of its pixel values, and later with the classified segments, the difference between 
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the two epochs is calculated. There are cases where the segmentation is not necessary because 
the object, or the study elements, are already classified and belong to a GIS or to a database. To 
update these elements using remotely sensed images, a classification is obtained with the classes 
contained in the database and then, the classification is compared with the original class of the 
objects (Walter, 2004). 

Until now the work performed has been based in the information contained within the objects. 
Sometimes external variables from the objects have been studied for the multitemporal image 
differencing, like in Im et al. (2008). In this work, the neighbour correlation has been studied for 
each object on the image. In this case, change detection is based in the correlation of the 
multispectral values in the same area, that in comparison with another image of a different 
epoch, the correlation will be higher when there are no changes and lower when changes have 
occurred.  

Methodologies currently posed for change detection use multispectral data or LiDAR data 
independently. Change detection methodologies which combine both data types are being 
developed, as well as methodologies that take into account shape, context and internal object 
information. Even though processes that combine both information types can be found, none of 
them are object-based.   

In the framework of our EuroSDR project, some experiments were done using pixel-based 
change detection methods applied to objects. The methods used were principal components 
analysis (PC) and change vector analysis (CVA). 

PC analysis allows detecting when analysing secondary components, the objects that have 
change respect to those unchanged. Using PC, have been tested specific relationships between 
changes in rural areas. The test was done over parcels with great homogeneity within them, 
which made their differentiation easy. 

In Figure 39, the changed (red) from unchanged objects (blue) can be distinguished in the 
scatterplots, as well as its typology: from vegetation to bare soil and vice versa, where highest 
red coloured groups represent the change from vegetation to bare soil and the lowest red group 
are the new vegetated parcels for the PC 2, 3 and 5. This suggests the possibility of 
discrimination between these two classes. 

The CVA consists in the calculation of the module and direction of the vector that joins pixel 
values in a space defined by two or more variables in two different epochs. The module value is 
referred to the change magnitude, and the direction represents the type of change. Scatterplots 
between the change direction and magnitude were analysed in a normalised scale from 0 to 1.  

In Figure 40, the scatterplot that represents the direction versus the distance from changed (red) 
and unchanged (blue) objects is shown. Objects tested belong to the same rural area used for the 
PC analysis, where the parcels used were homogeneous. The homogeneity of the parcels allows 
clearly to detect and to define the changes in two specific areas from the scatterplot. Direction 
values around 150º, are those parcels with change from vegetation to bare soil and vice versa for 
the parcels located around 350º. Both changes present distance values higher than 0.25.   
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Figure 39. Scatterplot comparing PC 1 and 2 (a), 1 and 3 (b), 1 and 4 (c) and, 1 and 5 (d) for a rural 
area.  
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Figure 40. Scatterplot of the change vector in a rural area. 
 

These standard change detection methods applied over objects do not have precise results, but 
present several possibilities in order to complement the methodology developed, adding new 
information per feature or helping to the direct change detection.  

 

 

(a) (b) 

(c) (d) 
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