virtual city systems

digital views. real perspectives.

EuroSDR Workshop LOD2 BUILDING MODEL GENERATION

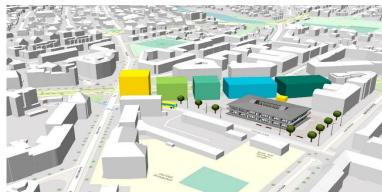
BuildingReconstruction A tool for LoD2 building reconstruction

Dr. Lutz Ross, lross@vc.systems

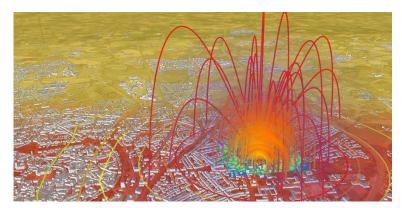
Virtual City Systems

- Founded in 2005
- Headquarter Berlin, Office in Grafing
- Leading CityGML experts
- Experts for 3D geoinformation and Digital Twins of cities

EVALUATION OF THE OUTPONE OF THE OUTPONE



CADFEM[°]GROUP


3D Spatial Data Infrastructures

Digital Urban Planning

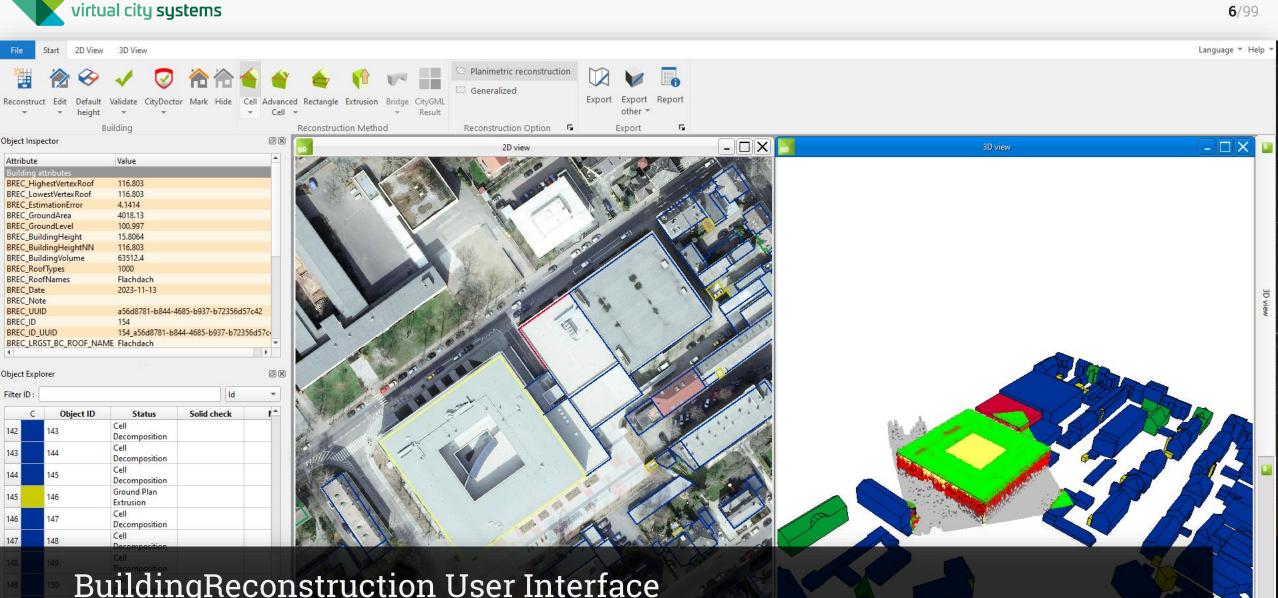
Urban Simulation

BuildingReconstruction – LoD2 building production


- Semi-automatic approach
 - based on cell decomposition of ground plans
 - Basic roof primitives are fitted to the DSM
 - Manual refinement by the user
- First software version developed by Martin Kada at the IFP Stuttgart
- Based on work by N. Haala und C. Brenner

BuildingReconstruction

- Since 2007 in productive use at VCS
 - Creation of LoD1 and LoD2 models as service for municipalities
- BuildingReconstruction is sold as software since 2010
 - Important improvement for the German market: groundplan based reconstruction
 - Core requirement for nation-wide LoD2 building models in Germany



2007 - 2009 Berlin LoD2 550.000 Gebäude Texturierung aus Schrägluftbildern Zusammen mit 3D Geo GmbH Federal Surveying Department of Bremen LoD2, approx. 320.000 Buildings

Federal Surveying Department of Bavaria LoD2, ca. 8,5 Mio. Buildings BRec user since 2012 Customized continuation workflow 2009 Frankfurt LoD2 230.000 Gebäude

2009 Leeuwarden LoD2 45.000 Gebäude

100G

BuildingReconstruction User Interface

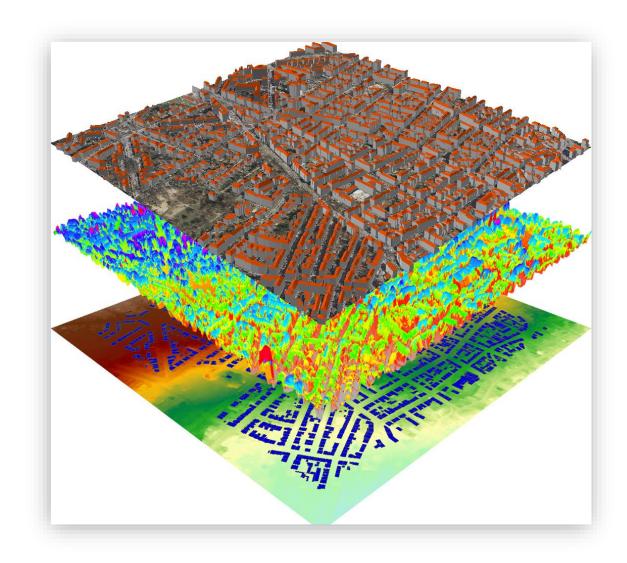
Ground Plan

Decomposition

Extrusion Cell

153

154


158

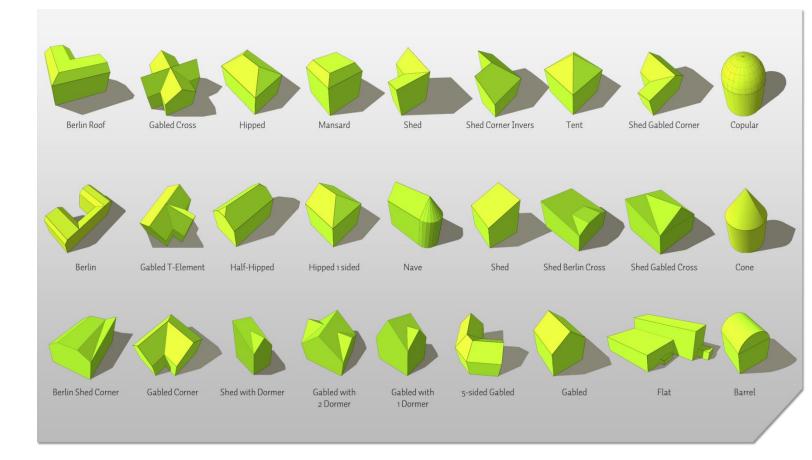
159

2D view

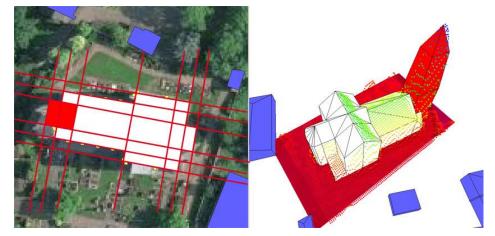

BuildingReconstruction

- →3D building extraction from Airborne Laserscanning (or pointclouds / DSM from dense image matching)
- Required inputs:
 - Digital Surface Model
 - Building Footprints
 - Digital Terrain Model
- Optional
 - Orthophoto

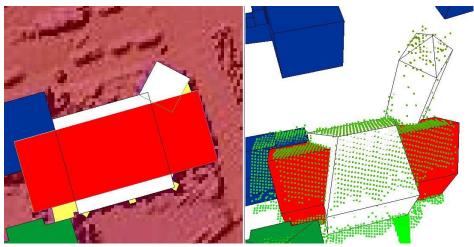
Reconstruction


- LoD 1 and LoD2 models will be generated fully automatic
- using the parametric roof type library
- After automatic reconstruction
 → manual quality control and
 refinement

Roof type library

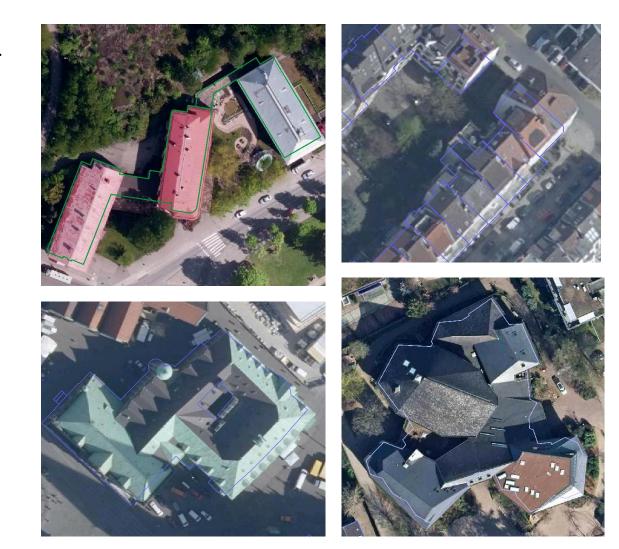

 32 main and connecting roof types are available

• Even special roof types like cupola, barrel and mansard can be used

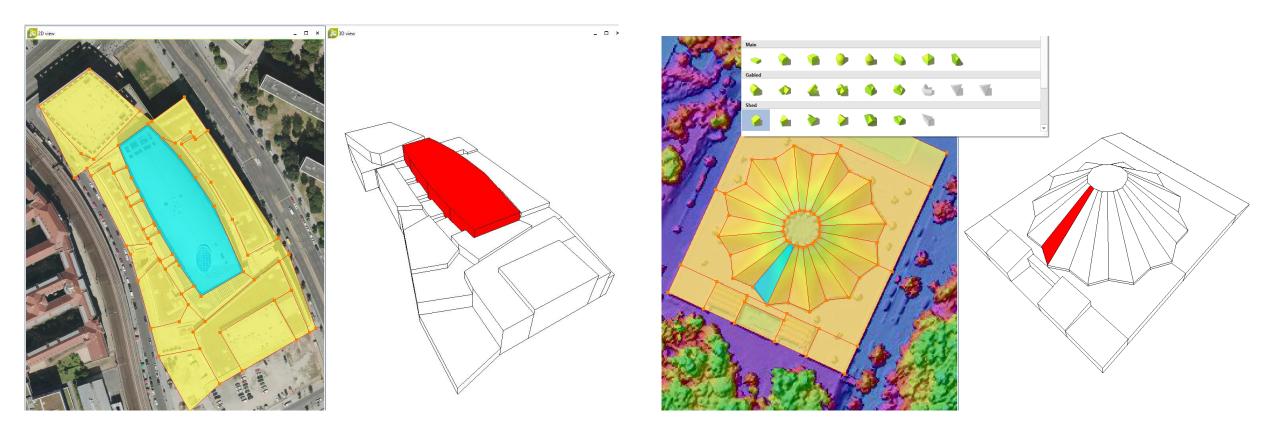


Reconstruction Methods

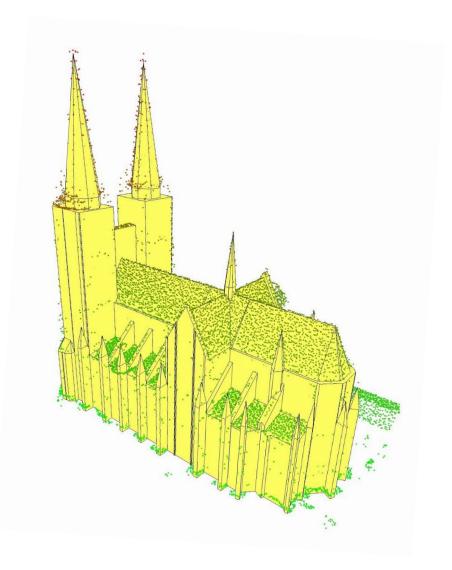
- Four different reconstruction methods are available
 - Cell division
 - Advanced cell division
 - Rectangle
 - Extrusion
- With rectangle division and cell division up to 80% correct classification for simple footprints


Cell division

Rectangle


Reality is complex

- Several roof shapes per floor plan
- Inner-city areas
- Density of buildings
- Modern architecture


Advanced Cell Editor

"new" editor since Version 2015 is a huge improvement

Modelling of LoD2+ buildings possible

- Modelling of small roof structures
- Use for POIs such as churches, museums, administrative-, public buildings or shopping centers

Efficiency

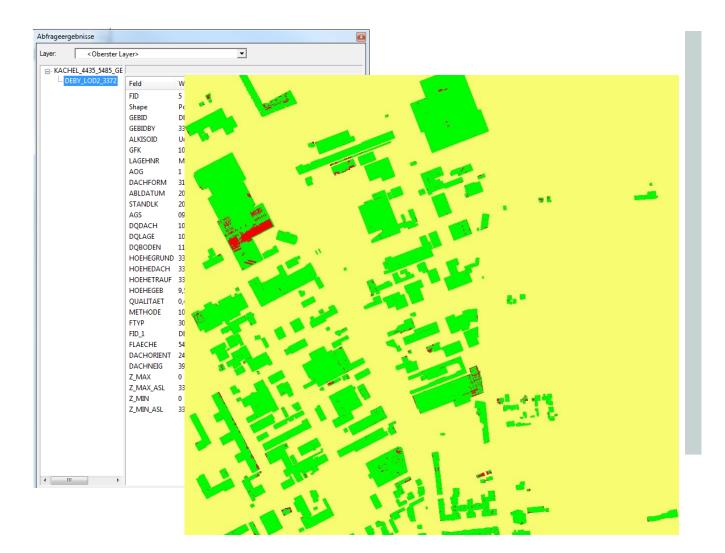
 In order to work efficient with BuildingReconstruction 1km² tiles are created for the entire project area

• To avoid duplicated buildings an overlapping area of 100 meters is recommended at the edge of each tile

Performance

• Initial building extraction runs fully automatic

- Approx. 3.000 buildings (LoD1 and LoD2) can be processed at one time within
 - 5 10 minutes
- \rightarrow approx. 10 buildings per second

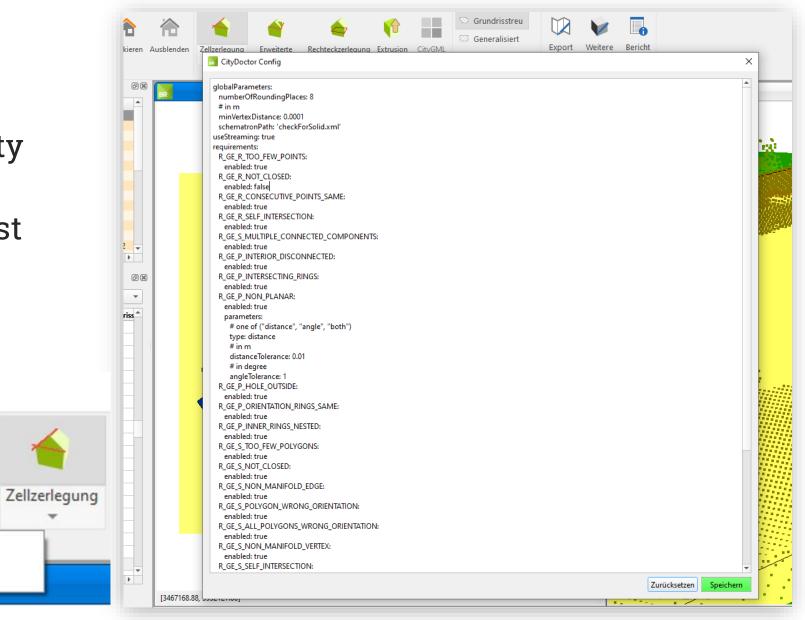

Semantics and Attributes

- Semantic information will be calculated automatically
 - ridge/ eaves height
 - roof pitch
 - orientation
 - roof area
- Convenient attribute mapping
- Shape File Attributes can be kept

7	Poof	Orient Area		ight make		Highest Z-V:		- SH	yGML : P & Cit ributes	-	tic ×
		FID	Shape*	Number	OBJID	Modified	EavesAbsol	RidgeAbsol	Eaves	Ridge	Lowes A
	H-		Polygon ZM		R027EYQ	Mouneu 0	61,29201	66,12876		Ruge 1	Lowes -
			Polygon ZM		R027EYQ	0	61,29201	66,12876	10,91035	15,52508	61,4
Eaves He			Polygon ZM	10	R027EYQ	0	61,29201	66,12876	10,91035	15,52508	61,4
			Polygon ZM	3	R027EYQ	0	61,29201	66,12876	10,91035	15,52508	61,4
		4	Polygon ZM	4	R027EYQ	0	61,29201	66,12876	0	0	5
		5	Polygon ZM	5	R027EYQ	0	61,29201	66,12876	0	0	5
¢.		6	Polygon ZM	6	R027EYQ	0	61,29201	66,12876	0	0	5
		7	Polygon ZM	7	R027EYQ	0	61,29201	66,12876	0	0	5
		8	Polygon ZM	8	R027EYE	0	61,88348	66,99916	0	0	
		9	Polygon ZM	9	R027EYE	0	61,88348	66,99916	11,76855	16,3201	62,2
		10	Polygon ZM	10	R027EYE	0	61,88348	66,99916	11,76855	16,3201	62,1
		11	Polygon ZM	11	R027EYE	0	61,88348	66,99916	11,76855	16,3201	62,2
	100		Polygon ZM		R027EYE	0	61,88348	66,99916	11,76855	16,3201	62,2
	100		Polygon ZM	1. C.S.	R027EYE	0	61,88348	66,99916	0	0	
			Polygon ZM	- CA	R027EYE	0	61,88348	66,99916	0	0	
			Polygon ZM	- C.S.	R027EYE	0	61,88348	66,99916	0	0	
			Polygon ZM	1	R027EYE	0	61,88348	66,99916	0	0	
		100.04	Polygon ZM	10.000	R027EYO	0	52,74788	61,27434	0	0	5
			Polygon ZM	0	R027EYO	0	52,74788	61,27434	6,95583	10,18721	57,2
		10,002,00	Polygon ZM		R027EYO	0	52,74788	61,27434	6,95583	10,18721	57,2
			Polygon ZM	1	R027EYO	0	52,74788	61,27434	0	0	5
			Polygon ZM	A	R027EYO	0	52,74788	61,27434	0	0	5
			Polygon ZM	- CE 23	R027EYO	0	52,74788	61,27434	0	0	5
			Polygon ZM	1.2	R027EYO	0	52,74788	61,27434	0	0	5
		24	Polygon ZM	24	R027EYN	0	57,03644	61,20388	0	0	
	Reco	ord: 🔟 📕	0	Show:	All Sele	cted Record	s (0 out of 14716	Selected.)	Options 🔻		

Export options

- Building Model
 - CityGML 2.0
 - ESRI 3D-Shape
- Project report
- 2D building components
- Distance point map


CityDoctor

- Tool to perform quality checks
- Integrated in the latest version of BRec

CityDoctor Markieren Ausblenden

Eigene Konfiguration verwenden

Eigene Konfiguration bearbeiten

Gebäude

Validieren

Ansicht

BuildingReconstruction – Selected customers

- Federal Surveying Agencies
 - Bavaria

virtual city systems

- Schleswig-Holstein
- Mecklenburg Western Pomerania
- Free Hanseatic City of Bremen
- Free Hanseatic City of Hamburg
- Cities
 - Frankfurt
 - Heilbronn
 - Karlsruhe
 - Ludwigsburg
 - Osnabrück
 - Freiburg
 - Baden-Baden
 - Rostock
 - Kaiserslautern

- International
 - Helsinki (Finland)
 - LSC Luxembourg (Luxemburg)
 - SDFI Danish Survey (Denmark)
 - Kristianstad (Sweden)
 - GEOPOZ Poznan (Poland)
 - IKT Linz (Austria)
- Companies
 - Geoinfo Applications AG (Switzerland)
 - Infoserve (Japan)
 - MGGP Aero (Poland)
 - Infosolutions (Poland)
 - AeroVant S.A. de C.V. (Mexico)
 - Trigonos (Austria)

Conclusions

- **BuildingReconstruction** is an efficient tool to generate LoD2 building models from building footprints, a digital surface model and a digital terrain model
- It is optimized to work with DSM resolution of 0.5 meters
- It doesn't provide any CityGML editing functions and no texturing
- It is in use by customers worldwide, but core user group is in Germany
- More than 20 million LoD2 models reconstructed

Thank you for your attention

Questions or remarks?

www.vc.systems