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ABSTRACT PART II 

The past two decades have witnessed tremendous research efforts and significant progress in 

the application of terrestrial laser scanning (TLS) in forest inventories. To clarify the 

strengths and weaknesses of TLS as a measure of forest digitization, as well as the capability 

of recent algorithms to extract attribute of trees in forests, an international benchmarking of 

TLS approaches for forest inventories was launched in 2014 by the European Spatial Data 

Research Organization (EuroSDR) and coordinated by the Finnish Geospatial Research 

Institute (FGI). Twenty-four groups worldwide initially indicated that they would participate, 

and eighteen groups successfully processed the data and submitted their results for 

evaluation. Partners processed identical TLS datasets and delivered a common set of results, 

including the digital terrain model (DTM), the tree map, the tree height, the diameter at the 

breast height (DBH) and the stem curve of each individual tree at the plot level. In addition, 

the stem volume and tree biomass were calculated based on these parameters and on local 

allometric models. The outcomes from the partners were evaluated with a standard 

evaluation procedure. This paper reports the results of this benchmarking project and 

discusses the findings, which clarify the status quo of TLS-based forest investigations. With 

single-scan data, i.e., one hemispherical scan per plot, most of the recent algorithms are 

capable of achieving stem detection with approximately 75% completeness and 90% 

correctness in the easy forest stands (easy plots: 600 stems/ha, 20 cm mean DBH). The 

detection rate decreases when the stem density increases and the average DBH decreases, 

i.e., 60% completeness with 90% correctness (medium plots: 1000 stem/ha, 15 cm mean 

DBH) and 30% completeness with 90% correctness (difficult plots: 2000 stems/ha, 10 cm 

mean DBH). The application of the multi-scan approach, i.e., five scans per plot at the center 

and four quadrant angles, is more effective in complex stands, increasing the completeness to 

approximately 90% for medium plots and to approximately 70% for difficult plots, with 

almost 100% correctness. The results of this benchmarking also showed that the TLS-based 

approaches can provide the estimates of the DBH and the stem curve that are close to what is 

required in practical applications, e.g., national forest inventories (NFIs). In terms of 

algorithm development, a high level of automation is a commonly shared standard, but a 

bottleneck occurs at stem detection and tree height estimation, especially in multilayer and 

dense forest stands. The greatest challenge is that even with the multi-scan approach, it is 

still hard to completely and accurately record all trees in a plot due to the occlusion effects of 

the trees and bushes in forests. Future development must address the redundant yet 

incomplete point clouds of forest sample plots and recognize trees more accurately and 

efficiently. It is worth noting that TLS currently provides the best quality terrestrial point 

clouds in comparison with all other technologies, meaning that all the benchmarks labelled 

in this paper can also serve as a reference for other terrestrial point clouds sources.  

Keywords: forest inventory, point cloud, terrestrial laser scanning, TLS, benchmarking 

1 INTRODUCTION 

Terrestrial laser scanning (TLS) is a laser-based instrument that measures its surroundings 

three-dimensional (3D) space using millions to billions of 3D points. Attempts to achieve 

high-quality tree attributes in forests utilizing TLS started when the first commercial TLS 

system was introduced to the market in 1998. During the past two decades, the hardware has 

experienced rapid improvement, marked by its rapidly decreasing size, weight and price as 
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well as its constantly increasing spatial resolution and measurement speed. The current 

systems measure up to million-level points per second at the range of 100-300 meters; the 

range precision is at a millimeter level, and the angular sampling capacity is less than 0.01° 

in both horizontal and vertical directions.  

TLS has been in the spotlight in a forest-inventory context since its introduction. Early 

studies around the year 2000 (Erikson and Karin, 2003; Lovell et al., 2003; Simonse et al., 

2003; Aschoff and Spiecker, 2004; Hopkinson et al., 2004; Pfeifer et al., 2004; Parker et al., 

2004; Schütt et al., 2004; Thies et al., 2004; Watt and Donoghue, 2005) explored the 

potential of measuring tree attributes using TLS. The past two decades have witnessed 

steady progress in these types of studies (Henning and Radtke, 2006; Hosoi and Omasa, 

2006; Lefsky and McHale, 2008; Maas et al., 2008; Strahler et al., 2008; Côté et al., 2009; 

Jupp et al., 2009; Tansey et al., 2009). More recently, TLS has been shown to be capable of 

determining several high-quality tree attributes that are not directly measurable using 

conventional tools. Plot-level stem volume and biomass components were also shown to be 

estimated at accuracy levels that are similar to those of the best national allometric models 

(Yu et al., 2013; Kankare et al., 2013; Astrup et al., 2014; Liang et al., 2014; Newnham et 

al., 2015). 

However, the significant variance in the range of the hardware, the scanning setups, and the 

forest structures, as well as in the evaluation criteria and procedures, among the reported 

studies has made reliable assessment of the performances of TLS for forest inventory 

extremely difficult. For example, as a fundamental criterion of TLS-based forest in situ 

observation, the percentage of correctly detected trees from multi-scan TLS data ranged from 

50 to 100% at the plot level as reported in previous research (Liang et al., 2016). Considering 

the diversity of the elementary components in the reported studies, such literature-based 

statistics do not reflect the capability and the overall performance of TLS due to the lack of a 

common frame of reference.   

A proper understanding of the performance of TLS for forest in situ inventory can only be 

achieved when certain conditions are satisfied: that identical TLS data are processed; that 

common plot- and tree-level forest attribute are extracted; and that, the results from the 

algorithms are evaluated with reliable reference information utilizing standardized evaluation 

procedures. Under such conditions, all the algorithms are projected to a unique frame of 

reference, and an assessment of the status quo of the TLS-based forest inventory can be 

conducted by comparing the attribute extraction results of different algorithms.  

As such, an international benchmarking study of TLS in forest inventories (TLS 

benchmarking) was launched in 2014, led by the European Spatial Data Research 

Organization (EuroSDR) and partly funded by the European Community’s Seventh 

Framework Programme Project Advanced_SAR. As the coordinator of the project, the 

Finnish Geospatial Research Institute (FGI) conducted the acquisition of the TLS data and 

the reference data in 24 sample plots at a boreal forest in southern Finland. The sample plots 

were selected by foresters from the perspective of forest conditions representing three 

difficulty classes, i.e., “easy”, “medium”, and “difficult”, including the development stage, 

the stem density, the richness of sub-canopy growth, as well as the species composition in 

the forest stands, which also reflects the level of complexity in the TLS data processing. For 

the evaluation of the performances of the algorithms, a series of plot- and tree-level attributes 

are defined as standardized criteria, and fully automated procedures are developed under the 
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efforts of the FGI. For information about the conceptual and technical details, readers are 

referred to a separated paper about this benchmarking project (Part I). 

Eighteen partners from Asia, Europe and North America delivered the required results after 

processing the single- and multi-scan TLS datasets of the 24 sample plots. The required 

attributes included the DTM of each sample plot, the location, the height, the DBH, and the 

stem curve of each tree in the sample plot; the stem volume and tree biomass were calculated 

based directly on the delivered attributes or through local allometric models. The evaluation 

of the results from all the partners was conducted by the FGI. Detailed information about the 

partners and about their algorithms are summarized in section 2. A brief description of each 

algorithm in this benchmarking project is available in the appendix of this paper. Some of 

the algorithms applied in this benchmarking study were new, while most have been 

published or are an updated version of previously reported algorithms. For the published 

algorithms, comprehensive method descriptions are found in (Liang et al., 2012; Olofsson 

and Holmgren, 2016; Pirotti et al., 2013; Hackenberg et al., 2015; Ma et al., 2016; Wang et 

al., 2016; Xi et al., 2016; Koreň et al., 2017; Trochta et al., 2017). 

For the time being, this is the first international benchmarking of TLS-based forest 

inventories. The investigations on TLS performance is carried out from two different 

perspectives: first, from the TLS data point of view, i.e., the impact of the forest stand 

conditions and the data acquisition methods on the accuracy and completeness of the point 

cloud of a sample plot and, consequently, on the results of attribute extraction of an 

algorithm; and second, from the aspect of the algorithms, i.e., to what extent can the recent 

algorithms reach the best extraction of essential forest attributes from TLS data. Section 3 of 

this paper illustrates the evaluation results of the algorithms on the criteria utilizing the 

single- and multi-scan TLS data of the sample plots. In-depth analyses comparing the results 

in section 4 reveal the achievements and remaining challenges of recent studies, providing 

recommendations and paving the way for further studies and applications in the field. 

Furthermore, since static TLS provides the plot-level point cloud with spatial precision and 

detailed richness that is surpasses all other contemporary terrestrial point cloud technologies, 

e.g., mobile laser scanning (MLS) and image-based structure from motion (SfM), the 

evaluation results reported in this benchmarking also indicate the best performance that can 

be achieved from terrestrial point clouds for forest inventory. The conclusions about the 

performance and the challenges of TLS from this benchmarking can also be generalized to 

other sources of terrestrial point clouds. 

2 ALGORITHMS OF THE PARTNERS  

To accumulate as many representative algorithms as possible for benchmarking, the project 

was promoted at various conferences, and the call for partners was disseminated through 

scientific networks, various websites, and social media platforms. Eighteen groups from 

around the world successfully processed the data and submitted their results for evaluation. 

In addition to universities and research institutions, there were also partners from the 

commercial sector. Table 1 lists the name and the country of the partners in alphabetical 

order; the abbreviations of the names of partners are used in reference to their processing 

algorithm in the following descriptions. Out of the eighteen partners, fourteen processed both 

single- and multi-scan datasets and provided the extraction results of all criteria. Two 

partners processed both datasets and provided part of the required criteria. Two partners 

processed the single- or multi-scan data only and provided all criteria.  
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Table 1: The partners and methods in the international TLS benchmarking for forest 

inventories 

Full name Country Abbreviation  

Chinese Academy of Forestry China CAF 

Delft University of Technology  Netherlands TUDelft 

Finnish Geospatial Research Institute Finland FGI 

Institut Français de Pondichéry – Laboratoire des 

Sciences de l’Information et des Systèmes India/France IFP-LSIS 

INRA Biogéochimie des Ecosystèmes Forestiers – 

ING Laboratoire d’Inventaire Forestier France INRA-IGN 

Institute of Remote Sensing and Digital Earth China RADI 

Korea Univeristy South Korea KU 

Nanjing University China NJU 

Shinshu University Japan Shinshu 

Swedish University of Agricultural Sciences Sweden SLU 

Technical University in Zvolen Slovakia TUZVO 

Technische Universität Wien  Austria TUWien 

The Silva Tarouca Research Institute for Landscape 

and Ornamental Gardening Czech Republic RILOG 

Treemetrics Ireland TreeMetrics 

University of Lethbridge Canada ULeth 

University of Padova Italy UNIPD 

University of Sopron Hungary NYME 

Wuhan University China WHU 

  

The eighteen algorithms in the benchmarking include a wide range of variation in terms of 

their methodological development. The variety of algorithms can be inspected based on the 

characteristics of their data structure, work flow and parameter settings for implementation. 

Despite the wide range of designs, the algorithms have a high level of automation; fifteen 

algorithms are fully automated, and the other three are semi-automated approaches. During 

data processing, twelve partners applied the same parameter settings for all the sample plots 

and single- and multi- scan data, which indicates the robustness of the algorithms towards 

different stand and data conditions. 

Table 2 summarizes the main characteristics of the algorithms with an overview of the 

fundamental components of the algorithms in this benchmarking. Considering the length of 

this paper, more detailed descriptions of each algorithm are provided in the appendix. 



 

13 

 

Table 2: Brief summary of algorithms in the international TLS benchmarking for forest inventories 

 Method Data Processing Data Structure Methodological Concepts 

  data
1
 auto

2
 param

3
 stem 

detection 

stem 

modelling 

1. preprocessing 2. DTM 3. individual tree detection 4. stem modelling 

thinning filtering 

1 CAF single A U multiple 2D 

layers  

raster \
*
 \ lastools detecting circles in multi-

layers 

circles at different 

heights 

2 TUDelft both A D 

 

voxel  2D plane a 

random 

point in 

a voxel  

point 

distance  

morphological filtering 

+ polynomial 

interpolation 

clustering in voxel space  circles at different 

heights 

3 FGI both A U  point point the point 

closest 

to the 

center of 

mass in 

voxel 

flatness + 

normal 

vectors 

morphological filtering 

+ the linear 

interpolation 

point clustering and object 

modelling 

cylinder along the 

trunk 

4 IFP-

LSIS 

both A U \ \ \ \ approximation in 

multi-scales + 

polygonization 

\ \ 

5 INRA-

IGN 

both A U a 2D layer point Center 

of mass 

in voxel 

Statistical 

outlier filter 

the lowest point in 

multi-scales + 

RANSAC plane fitting 

+ inverse distance 

weighting (IDW) 

interpolation 

clustering in 3D circles along the 

trunk and cylinders 

for refinement for 

both stem and 

branches (LOD 4) 

6 RADI both A U voxel + 

multiple 2D 

layers  

point / 

raster 

\ \ filtering based on  

distances to model in 

multi-scale  

voxel distribution and point 

clustering 

circles at different 

heights 

7 KU single; 

both  

S-A; 

M 

U; 

U 

a 2D layer  \ \ \ minimum height + 

IDW interpolation 

manually identifying (semi-

) circular cluster  

a circle at the DBH 

height 
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8 NJU both A D 

 

point 2D plane one 

point in 

a 

neighbor  

 

number of 

point + 

distance  

surface class + IDW 

interpolation 

 

classification based on 

models and training 

samples from data + point 

clustering in 2D plane 

radius estimated at 

different heights  

9 Shinshu both A U multiple 2D 

layers  

raster \ \ \ point number in voxel  \ 

10 SLU both A U voxel point \ flatness minimum height in 

multi-scales 

selecting curvature with 

same radius and originates 

+ connected vertical 

cylinders 

cylinder along the 

stem 

11 TUZVO both S-A, 

 

D 

 

multiple 2D 

layers  

2D plane \ \ the lowest point + 

natural neighbor 

interpolation 

segment in a 2D plane + 

fitting a circle 

circles at different 

heights 

12 TUWien both A U a 2D layer point \ normal 

vectors 

 

hierarchical robust 

filtering + Robust 

Moving Plane / 

Delaunay TIN 

interpolation 

-- project points onto a 2D 

horizontal plane.  

-- generate point density 

image and convert to a 

binary image 

cylinders along the 

stem 

13 RILOG both S-A U 

 

multiple 2D 

layers  

2D plane \ \ the lowest point + 

IDW interpolation 

manual detection circles at different 

heights 

14 Treemet

rics 

both A U a 2D layer 2D plane \ curve 

smoothness 

the lowest point + plan 

fitting 

clustering in a 2D slice circles at different 

heights 

15 ULeth both A U  voxel + 2D 

plane 

 

2D plane \ voxel 

distribution  

the lowest point + 

IDW interpolation 

finding the local extrema in 

2D plane projected from 

voxels + filtering fine stem 

points by 3D region 

growing 

circles at different 

heights 

16 UNIPD both A U  \ \ \ \ morphological filter + 

natural neighbour / 

Kriging interpolation 

\ \ 



 

15 

 

17 NYME single A D 

 

voxel + 2D 

plane 

2D plane \ voxel 

distribution+ 

penetration 

rate  

hierarchical 

interpolation for the 

classified points 

Finding voxels with high 

point density + segment in 

a 2D plane 

circles at different 

heights 

18 WHU both A U multiple 2D 

layers  

raster/poin

t 

\ \  detecting cylinders in 

multi-layers and find linked 

cylinders 

circles at different 

heights 

1. 
Refers to the TLS dataset, which has been processed for the benchmarking; “both” means both single- and multi-scan data are processed, “single” means only single-scan 

data are processed     

2.
 The level of automation of the algorithm: “A” is fully automated; “S-A” is semi-automated; “M” is manual. 

3. 
The parameter settings for different sample plots and different TLS datasets: “U” means the universal parameter setting for all sample plots and all datasets; “D” means 

different parameters are applied for different sample plots; and single- and multi-scan datasets.  

* 
 \ indicates that no relevant processing is applied. 
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3 EVALUATION RESULTS 

The evaluation of the algorithms is carried out using eight criteria, namely, 1) the DTM, 2) 

the overall stem detection accuracy at the plot level, 3) the tree location, 4) the DBH, 5) the 

tree height, 6) the stem curve, 7) the stem volume and 8) the tree biomass at the individual 

tree level. The first six criteria are directly extracted from the point cloud, and the volume is 

estimated from the extracted stem curve and tree height. The biomass is predicted using the 

extracted tree attributes and local biomass allometric model. It should be noted that this 

benchmarking has no intention of determining which algorithms surpass the others. One 

substantial challenge for algorithm development is that there are tradeoffs among different 

criteria, and the algorithm designs must assign priorities to the criteria respecting their own 

application requirements. Thus, each of the algorithms has its own strengths and weaknesses. 

This benchmarking only provides a spectra to describe the capability of recent TLS-based 

forest inventories, and the value of the evaluation results lies in the revealed status quo for 

the algorithms.  

All the evaluations are separately conducted in each sample plot. To reveal the influences of 

the forest conditions, the results are summarized based on three stand complexity categories, 

namely, an average is calculated for the evaluation results over all the sample plots in the 

same stand complexity category. Therefore, the performance of the algorithms is linked with 

the stand conditions of the forest. For more detailed information about the stand conditions 

in the sample plots and the definition of the complexity categories, readers are referred to a 

separated paper about this benchmarking.  

3.1 Digital Terrain Model (DTM) 

The DTM influences and is needed for the estimation of tree attributes, e.g., the tree height, 

the DBH and the stem curve. The more accurate the DTM is, the higher the chance to derive 

accurate parameter estimations of individual trees. All the algorithms in this benchmarking 

filtered and removed ground points before the stem detection step leaving an impression that 

this is a standard step in the processing chain. However, it is worth noting that the removal of 

ground points decreases the data volume but is not necessary for feature extraction. 

Ground point filtering and terrain surface modelling have been among the most focused 

topics ever since laser scanning (or LiDAR) point clouds became available. Most of the 

DTM generation methods involve two main steps, i.e., the extraction of ground points and 

the interpolation of the terrain surface. 

The major challenge for TLS-based DTM generation comes from 1) complex terrains; 2) the 

occlusion effects caused by the shadows brought by objects, e.g., bushes, low vegetation and 

tree stems; and 3) the TLS point distribution that becomes sparser with increasing distance 

from the scanning position, especially in the single-scan approach. Therefore, a new factor 

called DTM coverage is introduced as an additional indicator for DTM evaluation. This 

factor indicates the ratio between the areas of the extracted and the reference DTMs. The 

reference DTMs were built from multi-scan TLS data and cover the entire plot area. The 

closer the ratio is to 100%, the larger the plot area that is covered by the DTM built from the 

point cloud data. In general, a low RMSE and almost 100% DTM coverage are expected. 
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Figure 1: RMSE of DTM built from the single-scan (upper) and multi-scan (lower) data. The 

left vertical axis corresponds to the RMSE, and the unit is meter; the right vertical axis 

corresponds to the DTM coverage, and the unit is percentage. 

The RMSE of the DTM increases as the stand complexity increases in both single- and 

multi-scan point cloud data. The more complex the stand is, the more shadows exist on the 

ground, and the more difficult it is to reconstruct terrain surface. 

As shown in Figure 1, in many cases, a high DTM coverage requires not only interpolation 

but also the extrapolation based on the extracted ground points, and the amount of applied 

extrapolation significantly influences DTM accuracy. One strategy to build accurate DTMs 

is to focus on areas where the signal penetrates ground vegetation well and where point 

cloud data are reflected from the ground, which may sacrifice DTM coverage, e.g., giving up 

the extrapolation at the plot border leads to a smaller size of the DTM, especially in the 

single-scan scenario. In such cases, the best achievable RMSE values of the DTM (FGI) are 

0.10 m (92.5% coverage), 0.14 m (87.5% coverage), and 0.16 m (66.4% coverage) in easy, 

medium and difficult plots, respectively, with the single-scan data. In contrast, when high 

DTM coverage is pursued, the best achievable RMSE (RILOG) values are 0.12 m (99.7% 

coverage), 0.24 m (99.8% coverage), and 0.27 m (95.9% coverage) in easy, medium and 

difficult plots, respectively. 
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The application of the multi-scan approach can reduce shadows on the ground; therefore, 

high accuracy can be expected without losing the coverage of the DTM. Seven out of sixteen 

algorithms, e.g., TUWien, provide similar DTM results in terms of accuracy and coverage 

when the multi-scan data are applied. The average RMSE and coverage of DTM across the 

seven algorithms with similar accuracies are 0.05 m (99.7% coverage), 0.08 m (99.6% 

coverage), and 0.10 m (99.7% coverage) in easy, medium and difficult plots, respectively. 

For the seven methods, the differences in the DTM accuracies between different stand-

complexity categories are moderate, indicating that the algorithms for DTM generation are 

well designed. 

Extrapolation introduces errors in DTM generation, as revealed by the results from the FGI 

and TUWien. Algorithms by the FGI and TUWien have similar performances in all stand-

complexity categories using the multi-scan data. The differences were visible in single-scan 

data. The FGI gave smaller RMSE and coverage values, while TUWien gave a lightly larger 

RMSE, but it covers the plots area more completely, indicating that extrapolation is the main 

error source. 

3.2 Stem Detection Accuracy 

Stem detection accuracy is evaluated by the completeness, the correctness and the mean 

accuracy of the detected trees in each sample plot. The completeness measures how many 

reference trees have been found by an algorithm. The correctness measures how many 

detected trees from an algorithm correspond to the reference trees. The mean accuracy 

provides an indication of how an algorithm is balanced between the omission (missing 

reference trees) and the commission (finding redundant trees) errors. 

Evaluation results for tree detection accuracy utilizing the single- and multi-scan TLS data 

are presented in Figures 2 and 3, respectively. The completeness and correctness are 

illustrated in the same figure to intuitively demonstrate the trade-off between these two 

characteristics and how different algorithms choose their priorities. In general, the efforts 

placed on detecting more trees, especially the small trees, lead to higher commission errors, 

namely, when pursing higher completeness of tree detection, the risk of obtaining a lower 

correctness increases. 

In an ideal scenario, an algorithm should be capable of providing high level of both 

completeness and correctness, which remain as a great challenge in reality. For most of the 

cases, the cost of higher completeness is a lower correctness and vice versa, which can be 

seen based on the relationship between the crossed lines and the bars in Figures 2 (a) and 3 

(a). For example, a tall bar, i.e., high completeness, is usually accompanied by a low 

corresponding cross, i.e., low correctness, and a high cross tends to be paired with a low bar. 

In extreme cases, an algorithm can achieve over 80% completeness in easy forest stand 

conditions from single-scan data, with the price of obtaining correctness that is below 60%, 

i.e., approximately 40% of the detected trees are commission errors. At the other end of the 

spectrum, an algorithm can achieve 100% correctness, i.e., all the detected trees are correct 

in terms of corresponding to reference trees while having a relative low completeness at 

approximately 60%. 

The mean accuracy illustrated in Figures 2 (b) and 3 (b) presents a balanced evaluation 

between the completeness and correctness. High correctness will compensate for low 

completeness of an algorithm and vice versa. The comparison of the results indicates that 

when the completeness and correctness are averaged, most of the algorithms perform at a 
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similar level. The variations in the mean accuracies amongst the algorithms in each 

complexity category are much less than the completeness and the correctness, regardless of 

the stand condition and the applied TLS data. 

 

(a) Completeness and correctness 

 

 (b) Mean accuracy 

 

Figure 2: The accuracy of tree mapping from single -scan TLS data. (a) The completeness 

and the correctness: the left vertical axis corresponds to completeness (bars), and the right 

vertical axis corresponds to the correctness (crossed line). (b) The mean accuracy. Units in 

both (a) and (b) are percentages. 

Considering the tendency of the algorithms toward detecting more trees or safeguarding the 

credibility of the detected trees, three types of algorithms can be distinguished, namely, 

“Aggressive”, “Conservative” and “Robust”. An “Aggressive” algorithm emphasizes the 

completeness by trying to detect as many trees as possible and has a relatively high tolerance 

for false detection, which might lead to low correctness. In contrast, a “Conservative” 

algorithm cares more about the correctness of the detected trees by focusing on trees that are 

comprehensively recorded in the point cloud, which would reduce the total amount of 

detected trees. A “Robust” algorithm tends to keep a balance between the completeness and 

the correctness by pursuing the highest possible accuracy for both factors. According to the 
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evaluation results, most of the algorithms in this benchmarking were designed in a 

“Conservative” (InraIGN, RADI, TUZVO, TUWien, TreeMetrics, and UofL) or “Robust” 

(CAF, TUDelft, FGI, Shinshu, SLU, NYME, and WHU) manner, and two algorithms were 

following an “Aggressive” (NJU and RILOG) principle. 

 

(a) Completeness and correctness 

 
(b) Mean accuracy 

Figure 3: The accuracy of tree mapping from multi-scan TLS data. (a) The completeness and 

the correctness, the left vertical axis corresponds to completeness (bars), and the right 

vertical axis corresponds to the correctness (crossed line). (b) The mean accuracy. Units in 

both (a) and (b) are percentages. 

From the detection results, the status quo of the algorithms for stem detection from the TLS 

data can be summarized as follows: 1) In a simple forest stand condition, it is normal to 

achieve a mean accuracy that is approximately 75% with single-scan data and 80% with 

multi-scan data. With the best efforts focusing on balancing between the omission and the 

commission errors, the completeness can reach 81.3% while having a correctness that is 

92.2% in a single-scan scenario, and 90.4 % completeness with 93.6% correctness utilizing 

multi-scan data. 2) With an increase in forest stand complexity, the performance of stem 

detection decreases significantly. In a single-scan condition, the average mean accuracy of 

all the algorithms for medium difficulty stands is approximately 64% and is even lower, i.e., 

ca. 31% for difficult stands. The best achievable pairs of completeness and correctness are 

70.6% and 92.4%, respectively, for medium plots and 33.8% and 94.8%, respectively, for 

difficult plots. 3) The application of multi-scan strategy will improve detection accuracy for 
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the medium and difficult stands by raising the average mean accuracy to approximately 74% 

for medium plots and to approximately 53% for difficult plots. The best achievable 

completeness pairing with correctness is 88.0% with 89.2% for medium plots and 66.2% 

with 92.8% for difficulty plots. 4) While the completeness decreases sharply in complex 

stand conditions, the correctness of the algorithms appears to be stable in different forest 

stands. The correctness is commonly above 90% in all three complexity categories, 

indicating that the detecting algorithms are mostly reliable. 5) The application of multi-scan 

strategy has a greater impact on the completeness than on the correctness. Algorithms, as 

well as associated TLS data, seem to be reliable when the detections are mostly correct and 

when commission errors are low in both single- and multi-scan scenarios. 

3.3  Stem Location 

The location of detected stems has a high accuracy level. Using the single-scan data, most of 

the algorithms can provide the stem location at RMSE levels of below 5 cm in easy plots, 

below 8 cm in medium plots, and below 10 cm in difficult plots, as shown in Figure 4. With 

multi-scan data, the RMSE of stem location can commonly be controlled to 2-3 cm in easy 

plots, 2-5 cm in medium plots, and 4-9 cm in difficult plots. 

 

(a) Stem location accuracy from single scan data 

 

(b) Stem location accuracy from multi-scan data 

Figure 4: The accuracy of stem location (a) from single-scan data and (b) from multi-scan 

data. In both (a) and (b), the left vertical axis corresponds to the RMSE of the stem location 

(bars), and the unit is cm; the right vertical axis corresponds to the correctness (crossed line), 

and the unit is percentage. 
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It is worth noting that the estimation accuracy of an individual parameter itself cannot 

represent the overall performance of an algorithm. The plot-level feature-extraction results 

require inspection in the context of the stem detection rate. For example, a method may 

achieve the best parameter estimation by focusing on only the trees that are creditably 

recorded in the data while omitting those are inadequately recorded, which gives high 

correctness and accurate parameter estimates, but sacrifices the completeness of stem 

detection. In contrast, a method may provide high completeness but sacrifices the parameter 

estimation accuracy. In between these two cases, a method may manage to provide decent 

estimation results while achieving a high level of stem detection completeness. Such results 

demonstrate typical cases for the selection of different algorithm development principles, 

i.e., Conservative by TreeMetrics, TUWien and InraIGN, Aggressive by NJU and RILOG, 

and Robust by FGI and SLU. Similar phenomena can also be observed for other parameters 

in the following sections. In this context, the completeness of stem detection is always 

illustrated as background information in the figures on parameter accuracy. 

3.4  Diameter at Breast Height  

The accuracy of DBH estimations is evaluated using the statistical factors RMSE, RMSE%, 

bias, and bias%, respecting the field measurement results in the reference data. The 

evaluation results are illustrated in Figures 5 (RMSE) and 6 (bias) for single-scan data, and 

in Figures 7 (RMSE) and 8 (bias) for multi-scan data. The bars in the figures represent the 

corresponding values of a statistical factor. In addition, the completeness of stem detection is 

illustrated with plus signs and a crossed line, through which a more comprehensive 

understanding of the accuracy of the DBH estimations can be derived.  

3.4.1 RMSE of DBH estimations 

Among the fourteen algorithms that provided DBH estimations, three algorithms (FGI, SLU, 

and NYME), which are in the “Robust” stem detection category, delivered an RMSE ranging 

from 2-4 cm and RMSE% ranging from 8-20% for all three stand difficulty categories from 

single-scan data, with above average completeness of stem detection. On the other hand, the 

Conservative algorithms (e.g. TreeMetrics) are capable of providing DBH estimates with 

even lower RMSE and RMSE% values, at 1-3 cm and below 10%, respectively, given that 

the completeness of stem detection is below the average level. For many algorithms, the 

accuracy of DBH estimations remained stable across the three stand complexity categories.  
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Figure 5: RMSE and RMSE% of the DBH estimation from single-scan TLS data. The left 

vertical axis corresponds to the RMSE (bars in upper subfigure, the unit is centimeter) and 

RMSE% (bars in lower subfigure; the unit is percentage). The right vertical axis corresponds 

to the completeness of stem detection (crossed line), and the unit is percentage  

Multiple scans clearly improve the accuracy of the DBH estimations. The RMSE can be 

reduced to less than 2 cm for all three complexity categories with the “Robust” and 

“Conservative” algorithms based on the multi-scan data. The RMSE% can be reduced to a 

range of 5-10% for easy and medium stands and 10-15% for the difficult forest stands. 

 

 

Figure 6: RMSE and RMSE% of the DBH estimation from multi-scan TLS data. The left 

vertical axis corresponds to the RMSE (bars in upper subfigure; the unit is centimeter) and 
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RMSE % (bars in lower subfigure; the unit is percentage). The right vertical axis 

corresponds to the completeness of stem detection (crossed line), and the unit is percentage  

3.4.2 Bias of the DBH estimation 

The bias of the DBH estimate is expected to be as close to zero as possible. A small bias 

accompanied by high stem detection completeness indicates that an algorithm is capable of 

carrying out unbiased DBH estimation while detecting more trees. 

When utilizing the single-scan data, the biases of DBH estimation of different algorithms 

diverse. Almost half of the algorithms tend to overestimate, while the other half of the 

algorithms tend to underestimate the DBH (see Figure 7). The results in this benchmarking 

reveal that current algorithms are capable of estimating DBH at a level close to zero for bias 

and bias% for sample plots in simple and medium complexity categories. At least four 

algorithms in this benchmarking achieved this goal. It is easier for the “Conservative” and 

“Robust” algorithms to achieve low bias on DBH estimations. For some algorithms, the bias 

of the DBH estimation can be extremely high, e.g., over ±50% for bias%, which is most 

likely because the DBH estimations of those algorithm (e.g., circle fitting) are largely 

impacted by a few outliers or gross errors. 

 

 

Figure 7: Bias of the DBH estimation from single-scan TLS data. The left vertical axis 

corresponds to bias (bars in upper subfigure; the unit is centimeter) and bias% (bars in lower 

subfigure; the unit is percentage). The right vertical axis corresponds to the completeness of 

stem detection (crossed line), and the unit is percentage  
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The application of multi-scan data can largely reduce the underestimation of the DBH; only 

three algorithms produced negative bias (see Figure 8). The bias of DBH estimations also 

confirms that the multi-scan approach is helpful for improving DBH estimation accuracy. 

The more complex the stand condition is, the more significant the advantage of applying the 

multi-scan strategy is. For the “Conservative” and “Robust” algorithms, the bias and bias% 

can be kept close to zero in all three stand complexity categories. 

 

 

Figure 8: Bias of the DBH estimation from multi-scan TLS data. The left vertical axis 

corresponds to bias (bars in upper subfigure; the unit is centimeter) and bias% (bars in lower 

subfigure; the unit is percentage). The right vertical axis corresponds to the completeness of 

stem detection (crossed line), and the unit is percentage 

3.5 Tree Height 

The tree height estimation is evaluated using the statistic factors RMSE, RMSE%, bias, and 

bias%, respecting the reference data, as with the DBH. The evaluation results are illustrated 

in Figures 9 (RMSE) and 10 (bias) for single-scan data, and in Figure 11 (RMSE) and 12 

(bias) for multi-scan data. For the convenience of interpreting the benchmark results, the 

figures have layouts that are similar to those used for the DBH. Ideally, an algorithm is 

expected to provide a low RMSE and an almost zero bias with high stem detection 

completeness. 
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3.5.1 RMSE of the tree height estimation 

A similar performance for tree height estimation is observed for different algorithms. With 

the single-scan data, the RMSE and RMSE% of most algorithms in the easy plots ranged 

from 2.4-4.5 m and 12-23%, respectively. Tree height estimations become more difficult 

when the stand complexity increases because the determination of the treetops of sub canopy 

trees and of small trees in dense forest stands is much more demanding. The RMSE and 

RMSE% of tree height estimation decrease to ranges of 3.5-7.8 m and 18–41%, respectively, 

in medium sample plots and of 4.0 – 7.7 m and 28% - 57%, respectively, in difficult sample 

plots. In medium and difficult plots, although the absolute values of the RMSE were similar, 

the RMSE% in the difficult plots was clearly larger than that in the medium plots because 

the difficult plots have many small trees. 

 

 

Figure 9: RMSE of the tree height estimation from single-scan TLS data. The left vertical 

axis corresponds to RMSE (bars in upper subfigure; the unit is meter) and RMSE % (bars in 

lower subfigure; the unit is percentage). The right vertical axis corresponds to the 

completeness of stem detection (crossed line), and the unit is percentage 

The improvement brought by the multi-scan approach for the tree height estimations is not as 

significant as for DBH estimation. For all the algorithms, the RMSE and RMSE% are 

approximately 2.8 m and 13% on average, respectively, under simple stand conditions; 4.4 m 

and 23%, respectively, for medium stand conditions; and 4.7 m and 30%, respectively, for 

complex stand conditions. 
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Figure 10: RMSE of the tree height estimation from multi-scan TLS data. The left vertical 

axis corresponds to RMSE (bars in upper subfigure; the unit is meter) and RMSE % (bars in 

lower subfigure; the unit is percentage). The right vertical axis corresponds to the 

completeness of stem detection (crossed line), and the unit is percentage. 

These results indicate that tree height estimation from the TLS data is still quite challenging. 

Due to the limitation of the terrestrial perspective for data acquisition, the treetops for most 

of the trees in a sample plot can hardly be recorded, even with the multi-scan approach. The 

algorithm RILOG presents the best results for tree height estimation by giving RMSE values 

of 2.4 m, 3.6 m and 4.1 m for the easy, medium and difficult plots, respectively, using the 

single-scan data and 1.2 m, 1.8 m and 2.1 m, respectively, using the multi-scan data, based 

on the condition that the individual trees were manually extracted from the point cloud. 

Therefore, the evaluation results of the RILOG algorithm can be interpreted as milestones of 

tree height estimation based on the TLS data, where tree detection errors were minimized by 

using manual segmentation. 

The hardware can also influence the accuracy of tree height estimates. In this study, the 

scanner is phase-based, which is prone to noise points. A pulse-based scanner may capture 

point cloud data that are less noisy and may have a better chance of recording treetops from 

multi-returns. 

3.5.2 Bias of the tree height estimation 

It is approved in this benchmarking that the TLS-based approaches underestimate tree 

heights. The tree height estimations present negative biases for almost all the algorithms, 

with only a few exceptions. The average underestimation for the tree heights is 
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approximately 2.2 m (bias) and 10% (bias %) across all the sample plots and algorithms 

when utilizing the single-scan data. 

Since it is commonly assumed that the TLS will record lower tree heights, some algorithms 

act aggressively and risk taking the tree heights from the upper layer tree crowns for the 

secondary layer trees. Under such circumstances, it is possible to overestimate the tree 

heights, especially in complex forest stands where the sub canopy growth is rich, which 

explains the positive bias and bias% in Figure 11. 

 

 

Figure 11: Bias of the tree height estimation from single-scan TLS data. The left vertical axis 

corresponds to bias (bars in upper subfigure; the unit is meter) and bias % (bars in lower 

subfigure; the unit is percentage). The right vertical axis corresponds to the completeness of 

stem detection (crossed line), and the unit is percentage. 

The effect of being “Aggressive” in estimating the tree heights from the TLS data becomes 

more obvious when applying the multi-scan data, where more algorithms overestimate the 

tree heights. The results in Figure 11 suggest the degree of aggressiveness of the algorithms. 

When more TLS points are provided in the multi-scan data, the risk of taking the wrong 

treetop locations for small and sub-canopy trees becomes higher by extracting the tree height 

from the TLS points that are close to the stem area. The overestimation of tree heights 

worsens when the forest stand condition becomes complex and when the amount of small 

and sub-canopy trees increases. On the other hand, the algorithms that continue to 

underestimate the tree heights in the difficult sample plots when utilizing the multi-scan data 

can be considered as “Conservative” for tree height estimations, and approximately 2/3 of 

the algorithms in this benchmarking belong to this category. 
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Figure 12: Bias of the tree height estimation from multi-scan TLS data. The left vertical axis 

corresponds to Bias (bars in upper subfigure; the unit is meter) and bias % (bars in lower 

subfigure; the unit is percentage). The right vertical axis corresponds to the completeness of 

stem detection (crossed line), and the unit is percentage. 

By using multi-scan data, both the RMSE and bias decrease, but the bias is substantially 

reduced, which is an advantage of using multi-scan data. 

3.6 Stem Curve 

The accuracy of the stem curve estimation is evaluated with the mean RMSE and mean bias 

of the stem diameters at different height levels of each matched stem, and these mean values 

are further averaged over the plots in the same complexity category. Additionally, to 

measure the efficiency of the algorithm in the stem curve estimation, two new evaluation 

factors, i.e., the curve length ratio (CLR) and the percentage of the tree height covered 

(PHC), are investigated. The CLR is defined as the ratio (in percentage) of the stem length 

covered by the extracted curve to that covered by the reference curve. The PHC is defined as 

the ratio (in percentage) of the stem length covered by the extracted curve to the reference 

tree height. The CLR reveals how well the stem curve extraction methods perform compared 

to reference measurements, e.g., manual measurements by laser scanning experts which 

indicate the best that a human operator can achieve from a point cloud. The CLR may be 

larger than 100%, which means the method extracts more diameters than the manually 

measured reference data or that the computer over-performs human beings if the method is 

fully automated. The PHC reveals the degree of the whole tree that is retrieved by the 

extraction methods, with 100% being the goal where an algorithm fully depicts the object. 
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The PHC indicates the capability of the TLS point cloud and an algorithm to depict the 

object in the field. 

3.6.1 RMSE of the stem curve estimation 

The RMSE of the tree-wise stem curve estimation from the TLS data is illustrated in Figure 

13. To remain consistent with the DBH and tree height, the basic layouts of the figure remain 

the same as in previous figures, except for an extra dashed line representing the PHC of each 

algorithm. 

A faithful understanding of the performance of stem curve extraction can only be derived 

through a consideration that integrates of the RMSE, the PHC, and the stem detection 

completeness. While the completeness indicates the number of trees detected in a plot, the 

RMSE and PHC indicate the capability of an algorithm in stem modelling, with the RMSE 

referring to the accuracy of the estimated diameters at different heights of a stem and the 

PHC measuring the proportion of the stem that is modelled. A “Robust” algorithm should 

present a small RMSE and large PHC with high completeness of stem detection. With an 

“Aggressive” algorithm, a large RMSE can be expected for large a PHC with high 

completeness. When an algorithm presents a small RMSE with low completeness, it is 

considered “Conservative” regardless of its PHC value.  

It is important to simultaneously take the three factors into account, and missing any of them 

will lead to a biased evaluation. For instance, if only the RMSE and PHC are considered, the 

“Conservative” and the “Robust” algorithms may perform similarly, where both designs give 

small RMSE and large PHC values. However, there is a clear difference in how these two 

strategies achieve these results. The “Conservative” algorithms achieve a small RMSE and a 

large PHC by accurately reconstructing stems that were completely and clearly recorded in 

the point cloud, which may constitute only a small portion of the stems in the plot. In 

contrast, the “Robust” algorithms provide plausible stem curve estimations for a large 

number of stems, part of which are not recorded by the high-quality TLS points, which is the 

strength of the algorithm. The perception of the performance of the algorithm can only be 

justified when the completeness of stem detection is properly referenced. 
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Figure 13: RMSE of the tree-wise stem curve estimation from the single- (upper) and multi-

scan (lower) TLS data. The left vertical axes correspond to the RMSE value (bars), and the 

unit is centimeter. The right vertical axes correspond to the completeness of stem detection 

(crossed line) and the mean PHC of the stem curve (crossed dash-line), and the unit is in 

percentage. 

The benchmarking reveals that the mean RMSE of stem curve estimation is relatively stable 

in terms of the stand conditions. Except for minor cases, most of the algorithms can achieve 

a mean RMSE that is between 1.3 and 6.0 cm from single-scan data, and between 0.9 and 5.0 

cm from multi-scan data for all three stand complexity categories. The impact of the stand 

complexity on the PHC is greater than that on the RMSE. A decrease in the PHC can be 

observed when the complexity of the forest stand increases. As expected, the PHC from the 

multi-scan data is higher than that from the single-scan data. The average PHCs across all 

the algorithms are 52%, 48% and 43% for the simple, medium and difficult plots, 

respectively, from the single-scan data and 57%, 54% and 50%, respectively, from the multi-

scan data. 

The RMSE% of the DBH and stem curve estimates are quite similar for some algorithms 

(e.g., FGI, SLU, TUWien and TreeMetrics) from both single- and multi-scan and across the 

three forest complexity categories. The stem curve estimates may even be more accurate 

because more data are used, which lead to a better average. This similar accuracy, leaving 

aside the mean PHC, indicates that algorithms can have the same capacity in estimating the 

DBH and stem curve. In the future, when TLS-based forest inventories are applied, stem 

curves can be used as a tree attribute similar to DBH. 

3.6.2 Bias of the stem curve estimation 

The mean bias of the stem curve estimation also needs to be investigated in combination 

with the PHC and detection completeness. An almost zero mean bias with a high PHC and 

high completeness is expected for the stem curve estimation. In this benchmarking, diverse 

reactions are observed from the algorithms. Some algorithms have difficulty extracting the 

stem curve above the first branch height, leading to an over 10cm mean bias per stem from 

the single-scan data or even multi-scan data, indicating that those algorithms are intolerant of 

noisy stem data, especially in the tree crown, or give biased estimates. Such performance 

indicates that the estimation of the stem curve is a challenging task for most of the 

algorithms.  

Stem curves extracted from the multi-scan data tend to have a higher positive bias than those 

extracted from the single-scan data. In general, the mean bias of the stem curve estimations 
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becomes positive when the multi-scan data is applied, regardless of the stand situation. One 

reason is that multi-scan data provides a more complete stem structure; therefore, the 

estimated stem diameters at different stem heights increase. Another possible reason is that 

there is more noise surrounding the stems in the multi-scan data, especially at the crown, due 

to the branches or the registration errors of multiple scans.   

 

 

Figure 14: Bias of the tree-wise stem curve estimation from the single- (upper) and multi-

scan (lower) TLS data. The left vertical axes correspond to the RMSE value (bars), and the 

unit is centimeter. The right vertical axes correspond to the completeness of stem detection 

(crossed line) and the mean PHC of stem curve (starred dashed line), and the unit is in 

percentage 

3.6.3 Curve length ratio of the stem curve estimation  

The CLR, which is the ratio between the lengths of the automatically and manually extracted 

stem curves, is a more effective indicator of the capacity of the automated algorithms in 

extracting the stem curve. An almost 100% CLR is expected, which indicates that the 

automated results at least reach a similar level of coverage as human interpretation. 

However, the current automated approaches lag behind the manual process of stem-curve 

extraction except for time efficiency, which indicates that the current algorithms are 

significantly affected by the incomplete stem structure in the point cloud and by the noise.  

On the other hand, when only large trees that are recorded with high quality points are 

considered, i.e., with low completeness in stem detection, it is possible to extract more 
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diameters automatically than manually, as shown by the results from the InraIGN method, 

i.e., CLR > 100%. In a more balanced scenario where both high stem detection completeness 

and high-quality stem curve extraction are expected, the best achievable CLR values with 

average completeness are 87%, 81% and 74% in the easy, medium and difficult plots, 

respectively, with single-scan data and 97%, 92%, 88%, respectively, with multi-scan data. 

The application of the multi-scan approach clearly improves the length of the extracted curve 

from the automated methods, adding approximately an extra 10% of the tree height of the 

extracted stem curve. 

 

 

Figure 15: Mean CLR from the single- (upper) and multi-scan (lower) TLS data. The left 

vertical axes correspond to the CLR of stem curve (bars), and the unit is in percentage. The 

right vertical axes correspond to the completeness of stem detection (crossed line), and the 

unit is in percentage. 

The results in this benchmarking also show that (Figure 14) the best achievable accuracy for 

the stem curve estimation from the single-scan data is approximately 0.2 cm mean bias, with 

60% PHC and 81% completeness in simple plots; 0.2 cm mean bias, with 55% PHC and 

70% completeness in medium plots; and -0.1 cm mean bias, with 49% PHC and 34% 

completeness in difficult plots. For the multi-scan data, the accuracy of the stem curve 

estimation can reach to 0.2 cm mean bias, with 65% PHC and 94% completeness in simple 

plots; 0.2 cm mean bias, with 63% PHC and 88% completeness in medium plots; and 0.2 cm 

mean bias, with 56% PHC and 66% completeness in difficult plots. 
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3.7 Stem volume estimation 

As a function of the tree height and stem curve, the stem volume estimation reveals the 

overall performance of the extracted tree height and stem curve in an algorithm and also 

reveals the potential of applying TLS in forest inventories since stem volume is one of the 

most important tree attributes required by various applications. The stem volume estimation 

is evaluated on two different levels, i.e., the tree level and the plot level. While the tree-level 

evaluation explains the joint impacts of the tree height and stem curve estimations on the 

stem volume, the plot-level evaluation inspects the integrated impact of the tree-level 

attribute estimations and the stem detection accuracy. 

3.7.1 Tree-level stem volume 

The tree-level stem volume is calculated utilizing the stem curve and the tree height. More 

detailed information about the mathematical model can be found in another paper relevant to 

this benchmarking. The reference stem volume is calculated based on the manually extracted 

reference stem curve and the field-measured reference tree height using the same 

mathematical model as for the participant results. The estimated stem volume of each 

algorithm is calculated based on the stem curve and tree height results of the algorithm itself. 

While most methods estimate tree height from the TLS data, the TreeMetrics algorithm 

predicts the tree height from silviculture models for known tree species. In this comparison, 

the TreeMetrics algorithm did not estimate tree height. The stem volume is therefore 

calculated based on only the stem curve, so that the volume estimates of the treetop is 

missing in the calculation. It is worth noting that even though the volume tended to be 

underestimated; the volume estimates from TreeMetrics are still good, which indicates that 

the treetop volume makes up a relatively small part of the total volume. 

The performance of the algorithms is evaluated by the RMSE and RMSE% between the 

estimated and the reference stem volumes. Figures 16 and 17 illustrate the evaluation results, 

and the basic layout of the figures is consistent with the other figures. The differences in 

these figures are that the completeness of the stem detection is left out and that two more 

indicators that are closely related to the stem volume estimates, i.e., the RMSE% of the stem 

curve and the tree height, are integrated to conduct more insightful analyses.  
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Figure 16: RMSE (upper) and RMSE% (lower) of the stem volume estimation from the 

single-scan TLS data. The left vertical axis corresponds to the RMSE value (bars), and the 

unit is m
3
. The right vertical axis corresponds to the two relative indicators, i.e., the mean 

tree-level RMSE% of the stem curves (crossed line) and the RMSE% of the tree height (blue 

line), and the unit is percentage. 

Both the RMSE and RMSE% should be considered when evaluating tree attribute estimates, 

which can clearly be seen from the stem volume evaluation. Excluding the three extreme 

cases (TUDelft, NJU and RILOG), the average absolute RMSE of the tree-level stem volume 

across the compared algorithms are 0.17 m
3
, 0.33 m

3
, and 0.24 m

3
 in easy, medium and 

difficult plots, respectively, with the single-scan data, and 0.12 m
3
, 0.21 m

3
 and 0.18 m

3
, 

respectively, with the multi-scan data. The absolute RMSE of the stem-volume estimation in 

medium plots is higher than that of the difficult plots, seemingly hard to explain. The 

situation can, however, be clarified when the relative RMSE is referenced, e.g., the stem 

volume RMSE% values in easy, medium and difficult plots are 35.1%, 60.4% and 81.0%, 

respectively, with the single-scan data, and 28.3%, 47.3% and 77.1%, respectively, with the 

multi-scan data. Obviously, the stem volume estimation becomes more difficult when the 

stand conditions become more complicated. The reason for a smaller absolute RMSE of the 

tree-level stem volume in the difficult plots is because of the sizes/ages of the trees in the 

stand. With a much smaller overall tree size in the difficult forest stands, the absolute RMSE 

of the estimate of the tree-level stem volume is clearly smaller, but the accuracy of the stem 

volume estimation is still worse than that in the medium forest stands, given that the 

RMSE% in the difficult plots is higher. 
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Figure 17: RMSE (upper) and RMSE% (lower) of the stem volume estimation from the 

multi-scan TLS data. The left vertical axis corresponds to the RMSE value (bars), and the 

unit is m
3
. The right vertical axis corresponds to the two relative indicators, i.e., the mean 

tree-level RMSE% of the stem curves (crossed line), and the RMSE% of the tree height 

(blue line), and the unit is percentage. 

Another interesting finding is the strong correlation between the RMSEs of the stem curve 

and stem volume estimations from the compared methods, which can be clearly observed in 

Figures 16 and 17. Although the stem volume is a dependent variable of the stem curve and 

tree height, no similar coherence is observed between the stem volume and the tree height. In 

other words, an algorithm that provides better stem curve estimations always gives better 

results for stem volume estimations, but if an algorithm gives better tree height estimations, 

it cannot guarantee an accurate estimation of stem volume. Such phenomena are possibly 

related to the method of the stem-volume estimation, where the stem volume beyond the 

highest diameter measured is estimated by a cone-shape-model. More importantly, 

considering the relatively accurate volume estimates from the method TreeMetrics that 

missed the volume from the treetop totally and the low coherence between the stem volume 

and the tree height estimate accuracies, it turned out that the stem curve plays a more 

determining role than the tree height. 
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3.7.2 Plot-level stem volume estimation 

To further investigate the performance of TLS-based plot-level estimations of stem volume, 

a new factor called trunk-volume-ratio, i.e., the ratio between the total volume of all 

extracted trees and all reference trees in a plot, is introduced as an evaluating indicator. A 

value close to 100% is expected for the automated algorithms. As shown in Figure 18, the 

ratio can be below and above 100% for different algorithms. Underestimation of the stem 

volume at the plot level can be explained by at least four factors: 1) the omission errors of 

the stem detection, 2) the limited total length of the extracted stem curves, 3) the 

underestimation of the stem diameters at different height of the stem curves (negative bias of 

stem curve estimation), and 4) the underestimation of tree heights. 

Overestimation, i.e., a larger than 100% ratio, can be attributed to 1) the commission errors 

of the stem detection, 2) the exaggerated estimation of the stem curves (positive bias of the 

stem curve estimation), and 3) the exaggerated tree height estimations. It is easier to derive 

larger trunk-volume-ratio from the multi-scan data due to the fact that the stem curve 

estimation tends to get positive bias, i.e., the stem diameter tends to be overestimated from 

the multi-scan data, as explained in section 3.5.2. 

 

 

Figure 18: Plot-level trunk volume ratio, single-scan (upper) and multi-scan (lower). The left 

vertical axis corresponds to the plot-level trunk ratio, and the unit is percentage. The right 

vertical axis corresponds to the two relative indicators, i.e., the completeness (crossed line) 

and the correctness (blue line) of stem detection, and the unit is percentage 
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The most important information discovered for the stem volume estimation is that with the 

best performances, the automated algorithms are capable of carrying out plot-level stem 

volume estimation at a similar accuracy level as the reference data from multi-scan data 

(94%, 87%, and 43% trunk-volume-ratio for easy, medium, and difficult plots, respectively, 

with the single-scan data and 107%, 107%, and 94% for easy, medium, and difficult plots, 

respectively, with the multi-scan data). Despite the high level of omission errors in the 

medium and difficult forest stands, the estimated total stem volumes in the plots are close to 

the reference value (i.e., 100%) using the multi-scan TLS data, indicating that the omitted 

trees by the stem detection are mainly small trees, and the total volume of those small tree 

plays a minor role in the plot-level stem volume. 

3.8 Biomass estimation  

The biomass was predicted using an allometric model as a function of DBH and tree height, 

and evaluated on both the tree and plot levels. The influence of the DBH and the tree height 

on the biomass calculation is investigated. 

3.8.1 Tree-level tree biomass estimation 

Approximately half of the algorithms (CAF, FGI, InraIGN, RADI, Shinshu, SLU, TUWien, 

and NYME) perform quite similarly in the biomass estimation as shown in Figures 19 and 

20; thus, the average of the RMSE value of these algorithms provided a general RMSE level, 

e.g., 64.9 kg (23.9%), 109.3 kg(43.2%), and 78.8 kg(53.2%) for easy, medium and difficult 

plots, respectively, with the single-scan data, and 46.4 kg(15.9%), 64.4 kg(27.2%), 49.9 

kg(39.3%), respectively, with the multi-scan data.  
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Figure 19: RMSE (upper) and RMSE% (lower) of the biomass estimation from the single-

scan TLS data. The left vertical axis corresponds to the RMSE value (bars), and the unit is 

kg. The right vertical axis corresponds to two relative indicators, i.e., the mean tree-level 

RMSE% of the DBH (crossed line) and the RMSE% of the tree height (blue line), and the 

unit is percentage. 

A stronger correlation is observed between the biomass accuracy and the accuracy of the 

DBH than with the tree height. However, the DBH is not the determining factor in the 

biomass estimation. Therefore, to support a reliable estimation of biomass, a robust 

algorithm should be able to provide plausible results for both the DBH and tree height. On 

the other hand, the benefit of multi-scan approach is more obvious in complex forest stands 

where the RMSE of tree-level biomass is reduced by approximately 15% in medium and 

difficult plots. 
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Figure 20: RMSE (upper) and RMSE% (lower) of the biomass estimation from the multi-

scan TLS data. The left vertical axis corresponds to the RMSE value (bars), and the unit is 

kg. The right vertical axis corresponds to two relative indicators, i.e., the mean tree-level 

RMSE% of the DBH (crossed line) and the RMSE% of the tree height (blue line), and the 

unit is percentage. 

3.8.2 Plot-level biomass estimation 

 

 

Figure 21: Plot-level biomass ratio, single-scan (upper) and multi-scan (lower). The left 

vertical axis corresponds to the ratio, and the unit is percentage. The right vertical axis 
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corresponds to two relative indicators, i.e., i.e., the completeness (crossed line) and the 

correctness (blue line) of stem detection, and the unit is percentage 

The accuracy of the biomass estimation at the plot level is evaluated through the biomass-

ratio, which is the ratio between the sums of the tree-level above ground biomass of all 

extracted and all the reference trees in a plot. The ratio reflects the combined influence of 

four factors, i.e., the completeness and correctness of stem detection, as well as the DBH and 

tree height accuracy. In Figure 21, the biomass ratios are illustrated in combination with the 

stem detection completeness and the correctness. The influence of the stem detection 

accuracy on the plot-level biomass estimation is clearer when comparing Figures 20 and 21. 

The closer the biomass ratio to 100%, the better the performance of an algorithm is at 

estimating the plot-level biomass estimation is. Due to the limitation of the overall stem 

detection accuracy, an algorithm that is capable of providing good results for tree-level 

biomass does not necessarily provide satisfying results for plot-level biomass.  

When an algorithm is capable of providing accurate estimates on the DBH and the tree 

height while maintaining a high completeness and correctness of stem detection, the 

biomass-ratio can reach to 86.1%, 81.2%, and 40.2% for easy, medium and difficult plots, 

respectively, with the single-scan data, and 98.9%, 95.8% and 80.0%, respectively, with the 

multi-scan data. These results indicate the value of applying the multi-scan approach for 

plot-level biomass estimations, which significantly improves the biomass ratio, especially in 

complex forest stands. 

4 DISCUSSION 

Supported by the international community, the benchmarking project was capable of 

covering eighteen different methods that were originally developed for different forest 

conditions on three continents. Considering the amount and the diversity of the evaluated 

method, the results and findings of this benchmarking project mark the milestones of TLS 

performance in forest investigations. The status quo of the methodology development and 

the accuracy of attribute extraction as well as the influences of data quality and forest 

conditions can be drawn from the analyses. 

4.1  The State-of-the-art of algorithm development  

The processes of forest measurements from the TLS point cloud data have reached a high 

level of automation. The majority of the methods in this benchmarking are fully automated, 

i.e., approximately 80% of the total methods. In addition, twelve of the fifteen fully 

automated methods use the same parameter setups for data with different forest conditions 

and different scanning setups, indicating a plausible flexibility and adaptability of these 

methods. From the perspective of the methodology development, the methods in the 

benchmarking demonstrated a wide range of variations. This section summarizes the major 

findings about the algorithms. 

4.1.1 General method design  

A general challenge of the automated methods for TLS-based forest investigations is the 

quality of the point cloud. On the one hand, TLS provides a dense point cloud that can be a 

heavy computational burden for processing. On the other hand, valid information on trees in 

the TLS data is almost always insufficient and noisy. In the single-scan data, all the trees are 

incompletely recorded due to the single view point and occlusion effects. The multi-scan 

approach can compensate for stem completeness to a certain degree; however, it also 
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increases the noise level due to the registration errors and the mixed scan-to-object distances 

in the merged data. 

To reduce the computational load and to improve the quality of the input data, two typical 

pre-processing operations are point thinning and noise filtering. For the algorithms that use a 

rasterized data structure, i.e., 2D raster layers and voxels, the application of the data structure 

is a sampling approach that reduces the data volume, which means that a point thinning 

approach is implicitly embedded in the procedure. For the algorithms that directly process 

the 3D points, an extra point thinning step is explicitly attached. Moreover, more than one-

third of the methods in this benchmarking carried out a point filtering process to denoise the 

input data, expecting to improve the accuracy of the stem modelling in the following steps. 

The art of the design method lies in the efforts to produce accurate tree/stem models from 

limited information recorded in the TLS data. With no exception, all compared methods 

consist of three essential steps, i.e., the detection of the stem points, the modelling of the 

detected stems and the validation of the preliminary results. For the majority of the compared 

methods, there is a clear separation between the first two steps, i.e., to extract the stem points 

first and to model the stem based on these extracted points. In another group of the methods, 

e.g., CAF and TUZVO, stem detection is achieved by the feature fitting/modelling, so the 

first two steps are accomplished simultaneously. A validation step is implicitly or explicitly 

involved in all the methods to select the “correct” stem models from the preliminary 

modelling results. 

A large variety within the algorithms is observed for the first step, i.e., stem detection. It is 

where manual processing is applied in the two semi-automated methods, i.e., KU and 

RILOG, which indicates the difficulty of algorithm development. In contrast to stem 

detection, algorithms for stem modelling are similar. A tree stem was modelled either with a 

series of 2D circles or with a series of cylinders. This means that tree/stem detection plays a 

determining role for the whole processing chain and most of the efforts were put into this 

specific step. 

It summary, most efforts to develop the algorithms serve a clear task, namely, to effectively 

and accurately extract the stem points from the point cloud. The quality of the remaining 

efforts, e.g., stems modelling and parameter extraction, is largely determined by the quality 

of the extracted stem points. This task has been and will remain the most fundamental step 

for the algorithm development. 

4.1.2 Data structure 

The most commonly applied data structures for stem detection and modelling are the 2D 

raster layer, the voxel and the 3D point. Among the eighteen methods in this benchmarking, 

ten are based on a 2D raster layer, six use the voxels, and two are point based. 

The 2D raster layer is widely accepted because of its simplicity and convenience. The 

algorithm development is relatively easy due to the richness and the capacity of the existing 

processing tools. When the 2D-raster-layer is applied, satisfactory results can be derived for 

mature and sparse forest stands with less effort. The main drawback of this data structure is 

that the accuracy of the results is limited by the signal-to-noise ratio in a 2D slice; tree 

detection becomes challenging in a slice that has a low information-noise ratio since noise, 

e.g., from the tree crown, may have patterns similar to those of the targets. It is possible to 

reduce the amount of false detection by adopting a series of 2D layers. Another major 

drawback is that the accuracy is restricted by the resolution of the rasterization. Details might 
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be lost due to the space partition during rasterization, which further hinders the detection of 

small stems and the estimation of stem parameters. The methods using 2D layer(s) in this 

benchmarking seem to have lower completeness of tree mapping than other algorithms. 

The voxel is another popular data structure beside the raster layers, which digitizes the 3D 

space into cubes of the same size. The main advantages of voxel are the data volume 

reduction, and the intuitive link between the 2D images and the 3D space, where voxel 

elements with the same height equal to a 2D raster layer, which raises the flexibility of the 

voxel structure when dealing with complex forest stands,; therefore, better results can be 

expected from the voxel structure than the 2D raster layers in the young and dense forests. 

Similar to the 2D raster layers, the major drawback of the voxel is its sensitivity toward the 

resolution of rasterization. 

Compared to the two different rasterized data structures, the point-based structure is much 

less applied. The heavy computational load of the dense TLS point cloud is the greatest 

challenge; therefore, point thinning is usually required in pre-processing. The advantage of 

the point-based data structure is the completeness of the available information, which 

improves the overall performance of tree detection and modelling. Another challenge comes 

from limited available data processing tools, which explains the small number of point-based 

algorithms in this benchmarking. 

All the data structures have their own benefits and weaknesses. There are no strict rules for 

the selection of a data structure. Developers may choose a data structure according to their 

own preferences for the ease algorithm development, the capacity of processing large 

amounts of data, or the quality of the final outcomes. 

4.1.3 Implementation principles  

The point cloud data in forest conditions are characterized by incomplete and fragmented 

trees due to the limited view point(s) and occlusion effects. Consequently, conflicts among 

priorities occur in the processing, where the most commonly seen conflict lies between the 

completeness and the correctness of stem detection, and trade-offs are observed throughout 

the processing chain. 

Prioritizing between the completeness and the correctness reveals the fundamental 

implementation principle of an algorithm. Three principle categories, named Aggressive, 

Conservative and Robust, were defined to describe the benchmarked algorithms. A method 

that follows an Aggressive principle gives a high priority to the detection rate, namely, it 

takes the risk of accumulating high commission errors and tries to delineate as many targets, 

e.g., trees, as possible. In contrast, a Conservative method allocates the highest priority to the 

correctness; it tries to focus on trees that are highly visible and record completely in the point 

cloud. When a method applies the Robust principle, it balances the options of detecting more 

targets and detecting the correct ones. The forest field inventory typically requires an ideal 

scenario to achieve high completeness along with high correctness, i.e., to follow a Robust 

principle; however, the task is challenging, and it usually involves higher methodological 

complexity and computational costs. 

Naturally, a high detection rate, i.e., a high completeness of stem detection, is expected when 

an algorithm is developed. However, the performance evaluation cannot simply rely on any 

single factor. A higher completeness usually implies a higher tolerance to the fragmented 

and noisy targets in the data, which potentially leads to higher commission errors and 

possibly further reduces parameter-estimation accuracy when the accepted stem points are 
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fragmented and noisy. The balance point between completeness and correctness should be 

determined by the final objective of the application. When a reliable parameter estimation is 

expected, the Conservative principle can also be a good option. 

4.1.4 Best practices  

Despite being significantly diverse, the benchmarked algorithms showed some common 

features, which suggest a road map for best practices. 

Tree-attribute estimation seems to follow a series of general steps. Data-volume reduction is 

practically used by all the methods, but it works in totally different ways, through either 

direct sampling or space partitioning. Steps such as noise filtering, individual tree detection, 

tree modelling and validation are commonly adopted. Among them, individual tree detection 

holds the most significant position in that it directly decides the quality of attribute 

estimations. The 2D detection method is adequate for locating standing alone trees. 

Regarding trees in close proximity, the 3D detection method works more efficiently. Tree 

modelling shows few variations. Two methods model the tree as a series of either cylinders 

or circles at different heights. The cylinder model seems to be more competitive than the 

circle model as shown by the superior stem curve accuracy. This is most likely because the 

cylinder model considers both vertical and horizontal information simultaneously. The 

validation step also is highly similar among the methods where the diameter and positions of 

the modelled segments are checked. 

4.2 The milestones of tree attribute extraction  

The results of the plot/tree attribute estimation were introduced in the section 3. An overview 

reveals the milestones. 

In general, the completeness levels of tree detection are at 70%, 60% and 30% for easy, 

medium and difficult plots, respectively, using the single-scan data. With the multi-scan 

data, the completeness level clearly improves and is at 90%, 80% and 50% for easy, medium 

and difficult plots, respectively. Meanwhile, 90% correctness, i.e., very low commission 

errors, can be expected from most of the methods, regardless of plot complexity and the 

scanning approaches. These results indicate that the TLS-based approaches are capable of 

mapping the trees accurately and that the TLS-based forest inventories can serve as a reliable 

information source, especially in less complex forest stands. The completeness levels also 

suggest that the TLS-based approaches are hindered by the visibility of stems. The multi-

scan approach can improve stem visibility, but its effectiveness is highly related to the stand 

complexity. 

The DBH estimation accuracy is at a 1-3 cm RMSE level for the best results. Forest stand 

complexity slightly influences the DBH estimation, but no significant difference in the DBH 

accuracy is observed between the forest stand complexity categories. The multi-scan TLS 

data improves the DBH accuracy, resulting from the improvement in the data coverage on 

the tree stems. The bias of the DBH estimation is close to zero for the best results, which 

satisfies the requirement of forest inventories. The small impact of stand complexity reveals 

that the determining factor for DBH accuracy is the quality of the stem points. Once a tree is 

correctly detected, which implies that the stem is recorded with a satisfactory TLS data 

(related to point coverage, distribution, number), the estimation of the DBH is reliable. 

For the tree height estimation, the results are at the 3-5 m RMSE level, and there is no clear 

difference between the methods. The results of this benchmarking also confirm that being 
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limited by the view-point, TLS has limited capacity for measuring tree heights in forested 

conditions, except in simple cases. The accuracy of tree-wise stem curve estimations is at the 

1-3 cm RMSE level for the best results, and the level is the same for both single-scan and 

multi-scan datasets. The bias of the tree-wise stem curve estimation is stable in different 

stand complexity categories and data acquisition approaches, which are close to zero for the 

best results. 

At a plot level, the estimations of stem volume from the multi-scan TLS data can be quite 

close to the reference data, e.g., close to the 100% trunk volume ratio in all stand conditions. 

For the biomass, the main challenge comes from the difficult plots, where the best ratio 

between the estimated and the reference biomass is 78% in a multi-scan scenario, but the 

ratio can be above 95% for easy and medium plots. 

4.3 Scanning approach and forest stand condition   

In addition to the overall performances of different stem mapping methods, this 

benchmarking also investigates the impacts of the different scanning approaches and the 

different stand conditions in forests. 

4.3.1 Single-scan vs. multi-scan approaches 

The single-scan approach has the simplest data acquisition setting and the fastest speed. The 

major problem is that single scans are limited in terms of the view angle; therefore, the point 

cloud is highly influenced by occlusion effects. In most of the cases, not all trees in a plot are 

recorded by a single-scan, and only the side facing the scanner is recorded. The multi-scan 

approach has the potential to map all the trees and to provide full coverage of the stem 

surface. However, the multi-scan approach requires more time to acquire the field data and 

more efforts in processing the data, e.g., the registration of multiple scans. 

The result of this benchmarking shows that the improvements of the multi-scan are 

remarkable for the overall detection rate, the stem curve estimation height percentage (PHC), 

and the tree height estimation. When utilizing the multi-scan data, averaged for all stand 

complexity categories, the completeness is improved by approximately 20%; the PHC, by 

approximately 10%; and the tree height, by approximately 1 m.  It is also clearly 

demonstrated that the more complex the stand condition in the plot is, the more important it 

is to apply the multi-scan approach. 

However, the benefits associated with the multi-scan approach are mainly related to 

individual tree mapping, rather than tree modelling. This can be seen by the fact that no 

significant improvement in the parameter estimations, e.g., the DBH, the stem curve and the 

volume, can be observed when applying the multi-scan data. These results indicate that once 

a tree is recorded at a satisfactory level, e.g., the tree is visible and can be correctly detected, 

the information captured in the single-scan data is also sufficient for stem modelling. 

Considering the marginal effects between costs and benefits, single-scan is quite competitive 

when the objective is not to map all the trees but to achieve accurate parameter estimation 

for the visible trees. 

On the other hand, the results in this benchmarking also reflect a clear improvement in the 

algorithm development during the past two decades, given that the recent algorithms are 

capable to build the stem models from the single-scan data with a quality similar to those 

from the multi-scan data. 
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4.3.2 Forest stand condition 

The test plots in this project were selected by foresters. The complexity categories cover a 

wide range of forest conditions, considering the species composition and the development 

stage. When interpreted in the context of stem detection and modelling, the most influential 

factor is the visibility, which is closely related to the forest stand factors, including the stem 

density, the mean DBH and species. It is intuitive that with an increasing stem density and a 

decreasing mean DBH in the forest stands, the occlusion effects are strengthened and the 

stem detection and modelling become more difficult. 

The stand condition significantly influences stem detection. The results in the benchmarking 

showed that the higher the complexity of the stand, the lower the completeness of stem 

detection. On the other hand, in terms of the stem modelling and parameter estimation, the 

impact of the stand condition mainly lies in the parameters that are relevant to tree height. 

The accuracy of the DBH estimations is stable among different stand complexity categories, 

but the tree height accuracy decreases when the stand complexity increases. Consequently, 

the accuracy of other height relevant parameters, such as the PHC of the stem curve, the 

volume and the biomass, changes according to the stand conditions. 

These findings indicate that the occlusion effects in the forest stands mainly increase the 

difficulty of stem detection, and reduce the effective tree heights recorded in the TLS point 

cloud. The application of multiple scans can improve the stem detection rate, but the 

improvement on the in parameter estimations is limited. In summary, the complex forest 

stands that are difficult for foresters remain a challenge for new technologies, such as TLS. 

5 OUTLOOK 

The initial motivation for applying TLS in forest inventories was to automatically derive tree 

attributes (e.g., tree positions, DBH, stem curve, tree height, and stem volume) to replace 

manual field tree measurements. The results of the benchmarking indicated that this has been 

mostly achieved in easy forest plots; from the multi-scan TLS data, tree mapping accuracy at 

the plot level is close to 100% and the tree-attribute estimates, i.e., tree position, DBH, stem 

curve, volume and biomass, from the best solutions are at or very close to the acceptable 

level. In this sense, the multi-scan TLS is technically applicable in practice under easy and 

homogeneous forest conditions. The best solutions can also provide accurate tree attribute 

estimates in complex forest conditions or using single-scan TLS, for the trees successfully 

recorded in point clouds. The accuracy of tree detection remains a main challenge, and the 

lower the stem visibility is, the lower the point-cloud data quality is; consequently, the 

detection rate of the algorithms is lower. For tree height, the recent algorithms are still not 

capable of providing the expected accuracy, i.e., 0-0.5 m accuracy, mainly because of the 

limited visibility of treetops from a single or several terrestrial viewpoints. 

In general, the turning point of accepting any new technique in practice is that the added 

value from the new technique surpasses previously available techniques. For forest field 

inventories, the influential factors include the estimation accuracy, cost (hardware and 

software) and usability (the hardware weight, software readiness, training, etc.). Considering 

the accuracy reported in this benchmarking, cost and usability are the main factors that limit 

the added value of applying TLS in forest investigations.  
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Meanwhile, these recent algorithms still need improvements. Many variances were observed 

among the algorithms in this benchmarking. Many algorithms perform similarly in easy and 

homogeneous forest conditions, but the results in complex forest conditions, at both the 

forest and tree levels, are what differentiate the performance of algorithms, which highlights 

the necessity of evaluating an algorithm on a wide spectrum of forest conditions to properly 

interpret the performance of a particular algorithm. 

Considering the variances and similarities observed in the algorithms, as well as the results 

shown in the benchmarking, a new method is likely to achieve an improved tree attribute 

estimation by taking several components into the new method design: a filtering step to 

reduce noise, a 3D-feature-based individual tree detection, modelling tree stem as a series of 

3D primitives (e.g., overlapped cylinders), and verifying the tree model by the parameters of 

the modelling elements. Having or not having the step to reduce the data volume depends on 

computational power. This step seems to be necessary, but it may become a selective option 

when the computing power is sufficient to handle the large amount of point cloud data. It is 

also possible to combine some steps into one procedure. In addition, the implementation 

principles (4.1.3) are fulfilled in the processing steps. In general, a Robust principle should 

be given a higher priority. 

This TLS benchmarking focuses on the tree attributes and data acquisition methods that have 

been widely reported in previous literature. Several important tree attributes, e.g., tree 

species; acquisition approaches, e.g., multi-single-scan; processing approaches, e.g., 

automated multi-scan registration; and applications, e.g., multi-temporal analyses, are not 

included in this project because few studies have been reported on these topics. Future 

studies should focus more on these topics.  

As shown in the benchmarking, forest conditions have significant influences on the quality 

of TLS data. Reconstructing individual tree models at different level of details (LoD) (e.g., 1 

and 2) can already be very difficult. For example, even in easy forests and with multi-scan 

data, no algorithms in the benchmarking gave unbiased tree height estimates, and no 

algorithms gave a stem curve that covers more than 70% of the total tree height while 

keeping above 60% stem detection completeness. As the stand complexity increases, the 

quality of the point cloud data sharply decreases and the multi-scan approach is barely 

capable of recording all the trees in a plot with a generally accepted number of scans, 

indicating that the reconstruction of individual tree models at higher LoDs (e.g., LoD 3 and 

4) is either extremely difficult or costly, especially in complex forest conditions. 

In addition, the role that TLS plays in forest field inventories is worth reconsidering. As 

mentioned previously, the initial motivation of applying TLS in forest inventories was to 

replace manual field tree measurements. From that perspective, it is challenging to use TLS 

in medium and difficult plots where a significant number of trees are not recorded in the 

point clouds. However, the benchmarking revealed that the accuracy of tree attribute 

estimates of detected trees, whether from single-scan or multi-scan data, are relatively good. 

This means what may hinder the practical use of TLS in complex forest conditions is the 

number of recorded trees instead of the inaccurate attribute estimates. Therefore, the 

emerging question is challenging to the initial motivation for the use of TLS, namely, 

whether it is necessary to record all the trees in small areas, e.g., sample plots, to achieve 

accurate quantitative evaluations of large forests. It is time to rethink modern forest 

investigations beyond conventional forest inventories that rely on circular or rectangular 

sample plots. 
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It is worth noting that the source of terrestrial point cloud data is constantly increasing. TLS 

had been the only practical tool to collect terrestrial point cloud data ten to fifteen years ago. 

In the past five years, more techniques, such as the structure-from-motion, structure-light-

type and mobile laser scanning, have become available to produce similar point clouds. 

However, the quality of TLS data remains as the best, or at least among the best, of all 

terrestrial point clouds due to the fact that stationary laser ranging is typically very accurate 

and that the registration errors in TLS are minimized by utilizing the artificial registration 

targets. Therefore, the results of this benchmarking label a standard for all the terrestrial 

point clouds. 

6 CONCLUSIONS 

To reveal the state-of-the-art of TLS-based forest investigations, an international 

benchmarking project was launched in 2014 by EuroSDR and assembled eighteen partners 

worldwide to participate. Algorithms for TLS-based forest mapping and modelling from the 

partners, including two commercial software products, were required to process identical 

TLS datasets and to deliver a common set of results, including the DTM, the tree map, the 

height, and the DBH as well as the stem curve of each individual tree at the plot level. The 

outcomes from the partners were evaluated with a standard evaluation procedure; thus, the 

performances of different algorithms were projected to a unique evaluation system so that a 

comprehensive understanding on the status quo of the TLS-based forest investigation 

algorithms could be achieved. 

The benchmarking project was designed to inspect TLS performance from the perspectives 

of the data acquisition, the algorithm development, and the forest stand conditions. The TLS 

data were collected from 24 sample plots utilizing both single-scan and multi-scan 

approaches. The sample plots were selected by foresters and classified into three complexity 

categories, i.e., easy, medium, and difficult, considering the complexity of forest conditions. 

When comparing the results from the different TLS data acquisition approaches, as well as 

the results of different stand categories, the influences of the TLS data quality and the forest 

stand complexity on the algorithms were clarified; hence, the impact of different algorithm 

development concepts and principles for the stem detection and modelling were more 

precisely and effectively studied. 

Considering the amount and the diversity of the evaluated methods in this benchmarking, the 

performance evaluations provide milestones for TLS-based forest investigations. With the 

single-scan data, most of the recent algorithms are capable of achieving approximately 75% 

completeness with 90% correctness for stem detection in the easy forest stands, where the 

stem density is approximately 600 stems/ha and the mean DBH is at 20 cm level. For the 

most competitive methods, the completeness can reach to over 80% with 90% correctness. 

The detection rate decreased when the stand conditions become more complex. For the 

medium forest stands, i.e. approximately 1000 stem/ha and 15 cm mean DBH, the 

completeness is at a 60% level with 90% correctness. In a difficult dense, young and 

multilayer stand, i.e., approximately 2000 stems/ha and 10 cm mean DBH, the detection rate 

decreases to 30% completeness with 90% correctness. The improvement with the multi-scan 

approach is substantial, which increases the detection rate by approximately 20% in all forest 

stand types, i.e., the completeness increases to 90%, 80%, and 50% levels in easy, medium 

and difficult stands, respectively, with a correctness that is close to 100%. Despite the high 

level of omission errors in the medium and difficult forest stands, the estimated total stem 
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volumes in the plots are close to 100% of the reference value using the multi-scan approach, 

which indicates that the omitted trees by the stem detection are mainly small trees, and the 

total volume of those small tree takes a small proportion of the stem volume at the plot level. 

The influences of the scanning approach are insignificant in terms of the accuracy of 

parameter estimations, except for tree height. Similarly, the impact of the stand condition is 

less substantial for parameter estimations. Once a stem is successfully detected, the 

estimation of its DBH and stem curve remained relatively robust for each algorithm, 

regardless of the scanning approach. The accuracy of parameter estimation is determined by 

the completeness and the clearness of the stem points; therefore, a trade-off exists between 

the stem detection and the stem modelling. A higher tolerance for a fragmented and noisy 

stem structure is required when a higher stem detection rate is pursued. Consequently, stem 

modelling becomes more difficult when dealing with such fragmental and noisy stem points. 

With the precondition of a plausible stem detection rate, i.e., the completeness is at the 

abovementioned average level, the RMSE% of the DBH estimation can be kept at the 10% 

level with both the single-scan and multi-scan data in easy plots, at the 15% level in medium 

plots, and at the 20% level in difficult plots. For the stem curve, the most promising results 

provide approximately 10% level of the RMSE% with both the single-scan and multi-scan 

data and in all three stand conditions. 

Hindered by the limited variation in viewing directions, it is challenging for TLS to capture 

the treetops; therefore, tree height measurements from TLS are commonly underestimated, 

and the situation becomes worse when the stand condition becomes more complex. With 

single-scan data, the RMSE% of the tree height estimation is at approximately 15% level in 

easy plots, at the 25% level in medium plots and at the 40% level in difficult plots. The 

multi-scan approach improves the RMSE% of tree height to approximately 10% level in easy 

plots, the 15% level in medium plots and the 25% level in difficult plots. 

The tree-level volume and biomass are also estimated based on the height, the DBH and the 

stem curve delivered from the partners. The results in this benchmarking demonstrate that 

the accuracy of the volume estimation has a strong correlation with the accuracy of the stem 

curve, while the biomass estimate correlates more strongly to DBH than to the tree height. 

An algorithm that gives a better estimation of DBH and stem curve always provides better 

results for the volume and the biomass. On the other hand, no such correlation is observed 

for the tree height estimations. When the single-scan approach is used, the RMSE% of the 

tree-level volume estimation can be expected to be at approximately 25% level for easy 

plots, the 40% level for medium plots, and the 50% level for difficult plots. The tree-level 

RMSE% of the biomass estimation can be expected to be at approximately 25%, 40%, and 

60% levels, for easy, medium and difficult plots, respectively. For the multi-scan approach, 

the RMSE% of the tree-level volume is at approximately 20%, 30%, and 40% levels for 

easy, medium and difficult plots, respectively, and the RMSE% of the tree-level biomass is 

at approximately 15%, 30%, and 45% levels for easy, medium, and difficult plots, 

respectively. 

In terms of algorithm development, a high level of automation is a commonly shared 

standard. Approximately 80% of the approaches in this benchmarking are fully automated, 

the rest are semi-automated. The rasterized data formats, i.e., the 2D raster layers and the 

voxels are the most popular data structures for stem detection and modelling from TLS point 

clouds. The 3D points as a data structure may provide more details and benefits with higher 

accuracies, but it is also hindered by high computational cost and heavy programming load. 
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Confronting the conflicts between the higher detection rate and better parameter estimation, 

three main principles are observed from the algorithms in this benchmarking, i.e., 

Aggressive, Conservative and Robust. The Aggressive principle allocates the highest priority 

to the stem detection rate, sacrificing the correctness of stem detection and the accuracy of 

parameter estimation. In contrast, the Conservative principle focuses on the correctness and 

the accuracy of stem models, resulting in lower completeness. The Robust principle pursues 

high stem detection correctness and accurate parameter estimations while maintaining a high 

detection rate, with the cost of highly complex algorithms. Each principle/algorithm has its 

own advantages and weakness, and the selection of a principle/algorithm depends on the 

final objective of the applications. 

Based on the similarities observed in the benchmarked algorithms and the results, a new 

method is likely to achieve good tree attribute estimation by taking a couple of components 

into the new method design: a filtering step to reduce noise, a 3D-feature-based individual 

tree detection, modelling tree stem as a series overlapped cylinders, and verification of the 

tree model by the parameters of the basic modelling elements. A step to reduce the data 

volume seems necessary at this moment, but it totally depends on computational power. 

The results from this benchmarking showed that the TLS-based approaches have the 

capability to provide DBH and the stem curve estimations that are close to what is required 

in practical applications, e.g., NFIs. Stem detection achieves high correctness regardless of 

the data acquisition approaches and the stand conditions. However, the bottleneck is at the 

completeness of stem detection and the accuracy of tree height estimation, especially in 

young and dense forest stands. These findings indicate that more research is needed to 

optimize TLS application in forest investigations. Improving algorithms to further explore 

the potential of TLS point clouds is one direction that is worth investigating. Another viable 

starting point would be to change to the concept of conventional field inventories in which 

all the trees in a sample plot must be measured. 

If the areal forest parameters can be achieved based on a sufficiently large sample of 

randomly located individual trees that are accurately modelled, the application of TLS or 

other terrestrial point clouds would be much more meaningful. It is therefore worth noting 

that, TLS currently provides the best quality terrestrial point cloud compared to all the other 

technologies, such as the mobile laser scanning, personal laser scanning, structure-light, and 

the image-based structure from motion, which means that all the milestones labelled in this 

benchmarking mark achievable targets for all types of terrestrial point clouds. Thus, the 

results in this benchmarking also provide information on the selection of terrestrial systems 

for point cloud acquisition. 
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