Using high-density LiDAR data for building models

Poul Nørgård, Chief Product Manager, Leica Geosystems 06 March 2019

Comparing Cameras and LDAR?

Sensor	Aircraft speed (km/h)	Density (points/m ²)	Swath (m)	Coverage rate (km²/h)	Comment
DMCIle	250	25	3100	775	20cm GSD
DMCIle	250	44	2300	575	15cm GSD
DMCIII	425	25	5100	2168	20cm GSD
DMCIII	425	44	3800	1615	15cm GSD
SPL100	425	8	2500	1063	
SPL100	425	15	2000	850	
SPL100	425	30	1000	425	15 points/m ² with 50% side overlap

Comparing LiDAR and Cameras is here done on points/m², please note difference in aircraft speed. LiDAR can be flown day and night, needing only a line of sight between sensor and terrain. Camera is normally restricted to a sun angle of > 30 degrees

Look at what we can get with just LiDAR! It's ready for Mapping

HxMap evolving...

Concept of HxMap

HxMap – 3D modelling workflow with HxMap BuildingFinder

What BuildingFinder can do!

- HxMap Building Finder is focusing on delivery of LOD 2 for large scale areas
- The software can automatically find buildings contours, but existing building polygons can be added
- With HxMap 3DEditor datasets can be edited and then textured by TextureMapper
- Segmentation can be done down to 30*30 cell size
- For superstructure on rooftops a cell size of 5*5 m are normally used but down to 1 m are possible

CityModelling & 3DEditor

Generation of SPL surveyed area for Bournemouth city in UK

- 80 km² with 106.500 building objects
- LiDAR data with 8-10 p/m²
- Classification (ground, vegetation, buildings) done by HxMap
- LOD2 as the end product
- Classification is done in about 24 hours on a single computer.
- Building generation about 14 hours on a cluster with 6 nodes

Example for Copenhagen

- Basic inputs (collected data):
 - Oblique images with 4 cm
 resolution
 - SPL LiDAR data with 30 p/m²
 - Area 1 km²
- Product:
 - Building boundaries in 2D
 - LOD2 building models
 - Building models with texture
- Processing time*:
- 3 h for block model
- 3 h for texturing
- *Single node, Xeon E5-2640 CPU, 32 GB RAM

- Need for LiDAR points
 - Rural areas + 8 p/m²
 - Urban + 10 p/m²
- Note:
 - XY accuracy is limited to the accuracy of the LiDAR data and it's not easy to get better XY MSQ than 25 cm
 - Automatic alignment of buildings is a needed function in the software

Copenhagen city center, The Queens Castle and the Marble Church

Frankfurt city center generated by BuildingFinder, data source TerrainMapper LiDAR sensor

Point classification

Texturing

Machine vision AI – location Intelligence can do a lot with LiDAR data. Examples: TerraLoupe

• TerraLoupe has built state-of-the-art deep learning algorithms to analyze large amounts of earth imagery at scale

Results | LiDAR Dataset | Ground Classification

Manual classification

Terraloupe classification

Detection test with LiDAR datasets

Results | LiDAR Dataset | Roof Classification via Al

Results | LiDAR Dataset | Vegetation Example

Higher vegetation

Results | LiDAR Dataset | Poles & Power Lines

